Soulaimen commited on
Commit
51181fa
·
1 Parent(s): 1ad647f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: resnet-50-bottomCleanedData
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.8342792281498297
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # resnet-50-bottomCleanedData
31
+
32
+ This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.4809
35
+ - Accuracy: 0.8343
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 7
59
+ - total_train_batch_size: 56
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.01
63
+ - num_epochs: 10
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.3235 | 1.0 | 141 | 1.3266 | 0.5096 |
70
+ | 1.1546 | 2.0 | 283 | 1.1380 | 0.5153 |
71
+ | 0.9412 | 2.99 | 424 | 0.8690 | 0.6515 |
72
+ | 0.8539 | 4.0 | 566 | 0.6672 | 0.7594 |
73
+ | 0.7967 | 4.99 | 707 | 0.6256 | 0.7503 |
74
+ | 0.7679 | 6.0 | 849 | 0.5357 | 0.8229 |
75
+ | 0.7265 | 7.0 | 991 | 0.5698 | 0.7832 |
76
+ | 0.7395 | 8.0 | 1132 | 0.5125 | 0.8161 |
77
+ | 0.7029 | 9.0 | 1274 | 0.4993 | 0.8150 |
78
+ | 0.7275 | 9.96 | 1410 | 0.4809 | 0.8343 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.28.1
84
+ - Pytorch 2.0.0+cu118
85
+ - Datasets 2.12.0
86
+ - Tokenizers 0.13.3