File size: 2,114 Bytes
e6ec2ec 209cd6a e6ec2ec e2d6f0b fb0b864 209cd6a e6ec2ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
license: apache-2.0
base_model: google/t5-efficient-tiny
tags:
- generated_from_keras_callback
model-index:
- name: SouthMemphis/t5-tiny_for_summarization
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# SouthMemphis/t5-tiny_for_summarization
This model is a fine-tuned version of [google/t5-efficient-tiny](https://huggingface.co/google/t5-efficient-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 4.6068
- Validation Loss: 3.5431
- Train Rouge1: 20.4053
- Train Rouge2: 3.9626
- Train Rougel: 16.3460
- Train Rougelsum: 16.3444
- Train Gen Len: 15.884
- Epoch: 3
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
| 6.2678 | 3.9891 | 17.7562 | 3.0062 | 14.6825 | 14.7004 | 14.717 | 0 |
| 5.1618 | 3.7340 | 19.5200 | 3.7088 | 16.1766 | 16.1763 | 15.528 | 1 |
| 4.8511 | 3.6247 | 20.1377 | 3.7645 | 16.1460 | 16.1223 | 15.966 | 2 |
| 4.6068 | 3.5431 | 20.4053 | 3.9626 | 16.3460 | 16.3444 | 15.884 | 3 |
### Framework versions
- Transformers 4.33.1
- TensorFlow 2.15.0-dev20230905
- Datasets 2.14.4
- Tokenizers 0.13.3
|