--- license: apache-2.0 base_model: facebook/wav2vec2-base-100h tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base-100h](https://huggingface.co/facebook/wav2vec2-base-100h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1428 - Wer: 0.1265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.924 | 0.26 | 200 | 4.0579 | 1.0 | | 2.9378 | 0.51 | 400 | 1.9506 | 0.9319 | | 1.4334 | 0.77 | 600 | 0.7472 | 0.4723 | | 0.8152 | 1.03 | 800 | 0.5167 | 0.3405 | | 0.6369 | 1.28 | 1000 | 0.3825 | 0.2747 | | 0.4931 | 1.54 | 1200 | 0.3361 | 0.2407 | | 0.4986 | 1.8 | 1400 | 0.3224 | 0.2228 | | 0.392 | 2.05 | 1600 | 0.2876 | 0.2086 | | 0.3527 | 2.31 | 1800 | 0.3104 | 0.2089 | | 0.3171 | 2.57 | 2000 | 0.2431 | 0.1821 | | 0.2847 | 2.82 | 2200 | 0.2153 | 0.1776 | | 0.3274 | 3.08 | 2400 | 0.2486 | 0.1679 | | 0.2901 | 3.34 | 2600 | 0.3754 | 0.1627 | | 0.2539 | 3.59 | 2800 | 0.2790 | 0.1642 | | 0.2427 | 3.85 | 3000 | 0.2485 | 0.1664 | | 0.1992 | 4.11 | 3200 | 0.2184 | 0.1574 | | 0.2873 | 4.36 | 3400 | 0.1967 | 0.1547 | | 0.2037 | 4.62 | 3600 | 0.2289 | 0.1506 | | 0.1967 | 4.88 | 3800 | 0.2263 | 0.1506 | | 0.2254 | 5.13 | 4000 | 0.1629 | 0.1463 | | 0.1808 | 5.39 | 4200 | 0.2015 | 0.1476 | | 0.1762 | 5.65 | 4400 | 0.1948 | 0.1456 | | 0.1829 | 5.91 | 4600 | 0.1521 | 0.1437 | | 0.1934 | 6.16 | 4800 | 0.1638 | 0.1431 | | 0.1643 | 6.42 | 5000 | 0.1476 | 0.1435 | | 0.1244 | 6.68 | 5200 | 0.1937 | 0.1394 | | 0.1615 | 6.93 | 5400 | 0.1508 | 0.1366 | | 0.1708 | 7.19 | 5600 | 0.1298 | 0.1348 | | 0.1736 | 7.45 | 5800 | 0.1383 | 0.1344 | | 0.1429 | 7.7 | 6000 | 0.1711 | 0.1330 | | 0.1453 | 7.96 | 6200 | 0.1844 | 0.1302 | | 0.1387 | 8.22 | 6400 | 0.3321 | 0.1297 | | 0.1259 | 8.47 | 6600 | 0.1617 | 0.1296 | | 0.0874 | 8.73 | 6800 | 0.1432 | 0.1270 | | 0.1107 | 8.99 | 7000 | 0.1302 | 0.1280 | | 0.1205 | 9.24 | 7200 | 0.1461 | 0.1270 | | 0.109 | 9.5 | 7400 | 0.1415 | 0.1271 | | 0.1117 | 9.76 | 7600 | 0.1428 | 0.1265 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1