ppo-LunarLander-v2 / config.json
Statos6's picture
First Try
9b79239 verified
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x795f5950bd00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x795f5950bd90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x795f5950be20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x795f5950beb0>", "_build": "<function ActorCriticPolicy._build at 0x795f5950bf40>", "forward": "<function ActorCriticPolicy.forward at 0x795f5950c040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x795f5950c0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x795f5950c160>", "_predict": "<function ActorCriticPolicy._predict at 0x795f5950c1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x795f5950c280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x795f5950c310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x795f5950c3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x795f594af500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707154856237014971, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKBnKz47f4i8YgKBO2+rDrqYmvS9qOTeugAAgD8AAIA/wPTxPeRpvD+tFt4+O+N9vmOg4T0Nf6U9AAAAAAAAAABaqD4+vxcGPkLGh70OK16+msj+PN7p3bwAAAAAAAAAALMqWD1AJgc/wSOUPeuy3L4HdDI9+5gXvQAAAAAAAAAA5ovgvQnScj2yyXg+N8dAvjMRTTxT6Xw9AAAAAAAAAADNOGs+HpcDPwl2IDzvqKK+B0IKPuJ9nLsAAAAAAAAAAICSHz4K838+q9JFvkCRW77VgUS8cV+dPAAAAAAAAAAAwOS2vYacrT9m3fe+UXe1vqRSvr0cnIC+AAAAAAAAAADNDLK5J9RCP6ajOjr2nBq/2dyjvHjb87wAAAAAAAAAAI16yD24pJM8i8tkvSAwbL4OgT48Hj43vAAAAAAAAAAALa8GvsMXiD7RMok9Ae2jvqNSGL3k5Zu7AAAAAAAAAABmfKu99shbuqOOcLUcKwexKRSkO1PQqTQAAIA/AACAP839lLwIWNA9Zp6jPPuzZ749zEC87tYnvQAAAAAAAAAA5vqmvQ99ELx4fZQ8z1P8u0b+br0zqdK8AAAAAAAAgD+N8DS+KImWvHDS2LoLwSC5hOUDPl/SDToAAIA/AACAP9qqKb54ZMY9h323PjY7fL63IoU91UVSPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9SKMvRJEqMAWyUS+mMAXSUR0CWIpevZAY6dX2UKGgGR0BzWuzv7WNFaAdL62gIR0CWIqmEGqxUdX2UKGgGR0Bv2WajN6gNaAdL4GgIR0CWIrkgfU4JdX2UKGgGR0Bu6SlWOp84aAdLzmgIR0CWIzqqwQlKdX2UKGgGR0ByBBTgl4TsaAdL62gIR0CWJIIT4+KTdX2UKGgGR0B0NHh99c8laAdL8mgIR0CWJPKXOW0JdX2UKGgGR0ByTW8yvcJuaAdL7GgIR0CWJgdadMCcdX2UKGgGR0ByglyMkyDaaAdL4WgIR0CWJo9HMEA6dX2UKGgGR0BZSpBHCoCNaAdN6ANoCEdAlih2rCFbmnV9lChoBkdAb9vYh+vyLGgHS/BoCEdAlijhF/hESnV9lChoBkdAcm6YlIEr5WgHTSEBaAhHQJYpOXC0ngJ1fZQoaAZHQHE63uy/sVtoB0vTaAhHQJYpQZqEeyR1fZQoaAZHQHA7zDfm9xpoB0vNaAhHQJYpVcGC7K91fZQoaAZHQHFTGGqPwNNoB0vUaAhHQJYpaab4Ju51fZQoaAZHQHI2Dy4FzMloB0v1aAhHQJYp4hKUVzp1fZQoaAZHQHC9OyAxzq9oB0vpaAhHQJYqByzXz191fZQoaAZHQHGuO36Q/5doB0vnaAhHQJYqg3irDIl1fZQoaAZHQHLtuRHPNV1oB0v+aAhHQJYsdJ/XoTx1fZQoaAZHQHB6fCyhSLtoB00KAWgIR0CWLUUSZjQRdX2UKGgGR0BzbWsaKk2xaAdLzGgIR0CWLu5p8F6idX2UKGgGR0Bxk0xO+IuXaAdL6GgIR0CWL3THKfWddX2UKGgGR0BcL6aoddVvaAdN6ANoCEdAli+QSSNfgXV9lChoBkdAcga5+6RQrWgHTR8BaAhHQJYvrBEa2nd1fZQoaAZHQHBk7m2b5M1oB0vZaAhHQJYv/gOz6ad1fZQoaAZHQG/FneSB9ThoB0vKaAhHQJYwcE+xGDt1fZQoaAZHQHF/kUTL4etoB0vzaAhHQJYxLIdU83d1fZQoaAZHQHAeOvdM0xdoB0v7aAhHQJYxQGeMAFR1fZQoaAZHQHBegZ88cMpoB0vnaAhHQJYxYhRqGlB1fZQoaAZHQHH0jdpItlJoB0v3aAhHQJYy15hScb11fZQoaAZHQHJxD+WGATZoB00vAWgIR0CWMyh/Aj6fdX2UKGgGR0BwXCNzbN8maAdLxGgIR0CWM2jzZpSKdX2UKGgGR0BwDodU83dcaAdNAQFoCEdAljcgEMb3oXV9lChoBkdAcGLEa2nbZmgHS9poCEdAljgUr5IpY3V9lChoBkdAcncJOWSlnGgHS95oCEdAljhObqhUR3V9lChoBkdAb/zegL7XQWgHS/NoCEdAljhpI1+AmXV9lChoBkdAco8T7EYO2GgHS+ZoCEdAljk4/JNj9XV9lChoBkdAcykHFglWwWgHS/toCEdAljmPZmI0qHV9lChoBkdAcZOxffGdZ2gHS99oCEdAljmkkv9LpXV9lChoBkdAcWV7nPmgamgHTQcBaAhHQJY5tM10knl1fZQoaAZHQHEUGxdIGyJoB00DAWgIR0CWOs8gIQe4dX2UKGgGR0BxjcelsP8RaAdNCAFoCEdAljrNl/Yra3V9lChoBkdActJnYQJ5V2gHS85oCEdAljrqk690zXV9lChoBkdAcOErLQokRmgHS9xoCEdAljsUGFBY3nV9lChoBkdAcbAK15Sm7GgHTRsBaAhHQJY8pdKNAC51fZQoaAZHQG+VZ75VOsVoB0vPaAhHQJY+WmwaBI51fZQoaAZHQHCzYVymygRoB0v0aAhHQJY+qn889wF1fZQoaAZHQGRmlRHf/FRoB03oA2gIR0CWPsv4dp7DdX2UKGgGR0ByaeU5dWyUaAdL6GgIR0CWQXHYpUgkdX2UKGgGR0BzlX6hxo7FaAdL/WgIR0CWQcyylenidX2UKGgGR0BvUq+evpyIaAdL9WgIR0CWQgBiCrcTdX2UKGgGR0By4i7I1cdHaAdNKQFoCEdAlkJHeaa1C3V9lChoBkdActGMQVbiZWgHTQcBaAhHQJZCfDZUT+N1fZQoaAZHQG9N3HR1HONoB0vkaAhHQJZCmg9Net11fZQoaAZHQHH4dzbN8mdoB0vlaAhHQJZCverMkhR1fZQoaAZHQHCDaInBtUJoB0vmaAhHQJZC7MlkYoB1fZQoaAZHQHEVUJrtVrBoB0v2aAhHQJZDEbXHzYp1fZQoaAZHQF9b15B1LapoB03oA2gIR0CWQ+b2USqVdX2UKGgGR0Bx9O0dBBzFaAdL22gIR0CWQ/ihFmWddX2UKGgGR0ByI0PAfuCxaAdLz2gIR0CWRPzEJjUedX2UKGgGR0BxV/Y02tMgaAdL6WgIR0CWRhtE5QxfdX2UKGgGR0Bxex5NXYDlaAdL+GgIR0CWRqduHerNdX2UKGgGR0ByCLQY1pCbaAdLzWgIR0CWRwd0JWvKdX2UKGgGR0Bib04BFNL2aAdN6ANoCEdAlkcP5gw483V9lChoBkdAb8/gJkXk52gHS9VoCEdAlkeJ17pmmXV9lChoBkdAax5ezlcQiGgHS99oCEdAlkf+3lS0jXV9lChoBkdAbvqXHim2s2gHS9BoCEdAlkgHkPtlZ3V9lChoBkdAdAbSEUTL4mgHS8BoCEdAlkgN70Fr23V9lChoBkdAcDSMmF8G92gHS9hoCEdAlkhSb2Dg63V9lChoBkdAcnLz8P4EfWgHS/9oCEdAlkkD+m3vyHV9lChoBkdAcIvKyfL9uWgHS/9oCEdAlkl87U5MlHV9lChoBkdAb9pc6eXiSGgHS+doCEdAlkoayfL9uXV9lChoBkdAcc27U5MlC2gHTRoBaAhHQJZKisgdOqN1fZQoaAZHQHFe0PhAGB5oB0vPaAhHQJZKtJlJ6IF1fZQoaAZHQHIWL92ovSNoB0vXaAhHQJZL4UoKD011fZQoaAZHQG9d7s4T9KpoB0vQaAhHQJZMm2CuloF1fZQoaAZHQHDfC+pOvdNoB0vWaAhHQJZMz/ffoA51fZQoaAZHQHJ/h73PAwhoB0vkaAhHQJZMzYbsF+x1fZQoaAZHQHASU+LWI45oB0vmaAhHQJZNzbYbsGB1fZQoaAZHQHGcJGBnSORoB0vTaAhHQJZNzJMg2ZR1fZQoaAZHQHE18RDkU9JoB0vraAhHQJZOaois4kx1fZQoaAZHQHETNQXQ+lloB0vxaAhHQJZOoEQoTf11fZQoaAZHQHGb3pr1uixoB00HAWgIR0CWT45nlGPQdX2UKGgGR0BwGeSHM2WIaAdL8GgIR0CWT7H5aePJdX2UKGgGR0BxrTk+5e7daAdLymgIR0CWUDWUKRdQdX2UKGgGR0BxK3L3bmEHaAdL/mgIR0CWUI6QeV9ndX2UKGgGR0ByJwyk9ECvaAdL32gIR0CWUPV+qioLdX2UKGgGR0BxKWN0eU6gaAdL9mgIR0CWUPn4fwI/dX2UKGgGR0BwTl1IRRMwaAdL5GgIR0CWU11AZ88cdX2UKGgGR0BxfSqwQlKLaAdL9GgIR0CWU6koWpIddX2UKGgGR0BwgjY/Vy3kaAdL7mgIR0CWU7IQvpQldX2UKGgGR0BxzlXXAdn1aAdNDgFoCEdAllOw/gR9PXV9lChoBkdAcqF+bmU4aWgHS+BoCEdAllRFt4zJp3V9lChoBkdAcDS003wTd2gHS+RoCEdAllRhgNPP9nV9lChoBkdAchbw8nuy/2gHS9ZoCEdAllSZrYXfqHV9lChoBkdAci61jy4FzWgHS+ZoCEdAllU4vzvqknV9lChoBkdAY/bwYLsru2gHTegDaAhHQJZV0hkiD/V1fZQoaAZHQG/XlZ5iVjZoB0vBaAhHQJZWIqjJuEV1fZQoaAZHQHKRrPUrkKhoB0v0aAhHQJZWsTURWcV1fZQoaAZHQG/6oTXarWBoB0vfaAhHQJZXYtHxz7x1fZQoaAZHQHCGn3xnWatoB00bAWgIR0CWV6npSrHVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}