--- license: apache-2.0 pipeline_tag: text-generation tags: - Solar Moe - Solar - Celestria --- # Celestria-MoE-8x10.7b ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/tiORws6ezzAHGJJODC8PA.png) The Celestria Series, is the "Big Sister" of the Lumosia and Umbra Series. It is an experiment born from the collective wisdom of the AI community, a mosaic of the eight best-performing Solar models (By my prefrences) its 3am.... again, I have a tendency to do this apparently so im not going to get to creative on this card. With this model I have created positive and negative prompt sentances: [Celestria Series] Based on prompt sentances. [Umbra Series] based on prompt keywords. [Lumosia Series] based on prompt topics. Let me know what you think! Come join the Discord: [ConvexAI](https://discord.gg/yYqmNmg7Wj) Template: ``` ### System: ### USER:{prompt} ### Assistant: ``` Settings: ``` Temp: 1.0 min-p: 0.02-0.1 ``` ## Evals: To come * Avg: * ARC: * HellaSwag: * MMLU: * T-QA: * Winogrande: * GSM8K: ## Examples: ``` Example 1: User: Celestria: ``` ``` Example 2: User: Celestria: ``` ## 🧩 Configuration ``` yaml experts: - source_model: Fimbulvetr-10.7B-v1 - source_model: PiVoT-10.7B-Mistral-v0.2-RP - source_model: UNA-POLAR-10.7B-InstructMath-v2 - source_model: LMCocktail-10.7B-v1 - source_model: CarbonBeagle-11B - source_model: SOLARC-M-10.7B - source_model: Nous-Hermes-2-SOLAR-10.7B-MISALIGNED - source_model: CarbonVillain-en-10.7B-v4 ``` ## 💻 Usage ``` python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Steelskull/Celestria-MoE-8x10.7b" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.bfloat16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```