File size: 7,556 Bytes
07e18df 0c4080e 992548a 255cae8 07e18df f2a6785 0c4080e 07e18df 8668eaa 8de079d 93eb9da 3fa4871 8de079d 93eb9da 0561aa7 93eb9da d9be7c3 884d363 0561aa7 93eb9da 0561aa7 a737a29 09f2a02 52e95f2 09f2a02 93eb9da 7f9484a 93eb9da 7f9484a 93eb9da 4fb85ac 884d363 4fb85ac 0c4080e 07e18df 93eb9da 2cbada7 93eb9da 884d363 93eb9da 0c4080e 0f09075 8de079d 07e18df 8de079d 0c4080e 8de079d 0c4080e 07e18df 0c4080e 255cae8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
---
license: apache-2.0
tags:
- moe
- merge
- mergekit
- Solar Moe
- Solar
- Lumosia
model-index:
- name: Lumosia-MoE-4x10.7
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.34
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-MoE-4x10.7
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.13
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-MoE-4x10.7
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.38
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-MoE-4x10.7
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 63.81
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-MoE-4x10.7
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.95
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-MoE-4x10.7
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.02
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-MoE-4x10.7
name: Open LLM Leaderboard
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/Qb88YeudOf7MYuGKTirXC.png)
# Lumosia-MoE-4x10.7
"Lumosia" was selected as its a MoE of Multiple SOLAR Merges so it really "Lights the way".... its 3am.
This is a very experimantal model. its a MoE of all good performing Solar models (based off of personal experiance not open leaderboard),
The models goal was to make a good all rounder, in chat/logic/rp
Why? Dunno whated to see what would happen
context is 4k but coherent up to 16k
Quants by @thebloke (thank you)
https://huggingface.co/TheBloke/Lumosia-MoE-4x10.7-GGUF
https://huggingface.co/TheBloke/Lumosia-MoE-4x10.7-GPTQ
Update: (Done)
Lumosia v1.5 has been uploaded.
Update 2:
A Lumosia Personality tavern card has been added
Come join the Discord:
[ConvexAI](https://discord.gg/yYqmNmg7Wj)
Template:
```
### System:
### USER:{prompt}
### Assistant:
```
Settings:
```
Temp: 1.0
min-p: 0.02-0.1
```
Lumosia-MoE-4x10.7 is a Mixure of Experts (MoE) made with the following models:
* [DopeorNope/SOLARC-M-10.7B](https://huggingface.co/DopeorNope/SOLARC-M-10.7B)
* [maywell/PiVoT-10.7B-Mistral-v0.2-RP](https://huggingface.co/maywell/PiVoT-10.7B-Mistral-v0.2-RP)
* [kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct)
* [jeonsworld/CarbonVillain-en-10.7B-v1](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v1)
## Evals:
* Avg: 69.61
* ARC: 68.34
* HellaSwag: 87.13
* MMLU: 64.38
* T-QA: 63.81
* Winogrande: 82.95
* GSM8K: 51.02
## Examples:
```
Example 1:
User:
Hello lumi, what is the meaning of life
in around 100 words.
Lumosia:
The meaning of life can vary greatly
depending on individual beliefs,
values, and experiences. One common
perspective suggests that the primary
purpose of life is to seek happiness,
fulfillment, and personal growth
through relationships
accomplishments, and spiritual
awareness. Living with integrity.
compassion, and gratitude while
making a positive impact on others
and the world around us can also
contribute to finding meaning in life
UItimately, the meaning of life is
subjective and unique to each
individual, who must define it for
themselves through exploration
reflection, and personal choice.
```
```
Example 2:
User:
Explain a MoE (Mixture of Experts) in
around 100 words
Lumosia:
A MoE, short for Mixture of Experts, is
a machine learning technique utilized
in ensemble learning. It involves
combining multiple specialist models
(experts) to optimize predictive
performance. Each expert focuses on
a subset of the input features or data
domains, making them specialized in
particular areas. Through a weighting
mechanism, like Gaussian Mixture
Model, the predictions of experts are
blended to produce a final result. MoE
models demonstrate effectiveness in
handling complex or ambiguous
inputs where a single model might
struggle. They are commonly used in
natural language processing.
computer vision, and speech synthesis.
```
## 🧩 Configuration
```
yamlbase_model: DopeorNope/SOLARC-M-10.7B
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: DopeorNope/SOLARC-M-10.7B
positive_prompts: [""]
- source_model: maywell/PiVoT-10.7B-Mistral-v0.2-RP
positive_prompts: [""]
- source_model: kyujinpy/Sakura-SOLAR-Instruct
positive_prompts: [""]
- source_model: jeonsworld/CarbonVillain-en-10.7B-v1
positive_prompts: [""]
```
## 💻 Usage
```
python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Steelskull/Lumosia-MoE-4x10.7"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Steelskull__Lumosia-MoE-4x10.7)
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.61|
|AI2 Reasoning Challenge (25-Shot)|68.34|
|HellaSwag (10-Shot) |87.13|
|MMLU (5-Shot) |64.38|
|TruthfulQA (0-shot) |63.81|
|Winogrande (5-shot) |82.95|
|GSM8k (5-shot) |51.02|
|