File size: 4,009 Bytes
07e18df 0c4080e 07e18df f2a6785 0c4080e 07e18df 8668eaa 8de079d 93eb9da 8de079d 93eb9da b9c104a 93eb9da 884d363 93eb9da 7f9484a 93eb9da 7f9484a 93eb9da 4fb85ac 884d363 4fb85ac 0c4080e 07e18df 93eb9da 884d363 93eb9da 0c4080e 0f09075 8de079d 07e18df 8de079d 0c4080e 8de079d 0c4080e 07e18df 0c4080e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
license: apache-2.0
tags:
- moe
- merge
- mergekit
- lazymergekit
- DopeorNope/SOLARC-M-10.7B
- maywell/PiVoT-10.7B-Mistral-v0.2-RP
- kyujinpy/Sakura-SOLAR-Instruct
- jeonsworld/CarbonVillain-en-10.7B-v1
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/Qb88YeudOf7MYuGKTirXC.png)
# Lumosia-MoE-4x10.7
"Lumosia" was selected as its a MoE of Multiple SOLAR Merges so it really "Lights the way".... its 3am.
This is a very experimantal model. its a MoE of all good performing Solar models (based off of personal experiance not open leaderboard),
Why? Dunno whated to see what would happen
context is maybe 16k? waiting for GGUF to upload.
Chat-instruct breaks the model at the moment, not really sure why, even tho it will follow instructions.
Template:
```
### System:
### USER:{prompt}
### Assistant:
```
Settings:
```
Temp: 1.0
min-p: 0.02-0.1
```
Lumosia-MoE-4x10.7 is a Mixure of Experts (MoE) made with the following models:
* [DopeorNope/SOLARC-M-10.7B](https://huggingface.co/DopeorNope/SOLARC-M-10.7B)
* [maywell/PiVoT-10.7B-Mistral-v0.2-RP](https://huggingface.co/maywell/PiVoT-10.7B-Mistral-v0.2-RP)
* [kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct)
* [jeonsworld/CarbonVillain-en-10.7B-v1](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v1)
## Evals:
* Pending
## Examples:
```
Example 1:
User:
Hello lumi, what is the meaning of life
in around 100 words.
Lumosia:
The meaning of life can vary greatly
depending on individual beliefs,
values, and experiences. One common
perspective suggests that the primary
purpose of life is to seek happiness,
fulfillment, and personal growth
through relationships
accomplishments, and spiritual
awareness. Living with integrity.
compassion, and gratitude while
making a positive impact on others
and the world around us can also
contribute to finding meaning in life
UItimately, the meaning of life is
subjective and unique to each
individual, who must define it for
themselves through exploration
reflection, and personal choice.
```
```
Example 2:
User:
Explain a MoE (Mixture of Experts) in
around 100 words
Lumosia:
A MoE, short for Mixture of Experts, is
a machine learning technique utilized
in ensemble learning. It involves
combining multiple specialist models
(experts) to optimize predictive
performance. Each expert focuses on
a subset of the input features or data
domains, making them specialized in
particular areas. Through a weighting
mechanism, like Gaussian Mixture
Model, the predictions of experts are
blended to produce a final result. MoE
models demonstrate effectiveness in
handling complex or ambiguous
inputs where a single model might
struggle. They are commonly used in
natural language processing.
computer vision, and speech synthesis.
```
## 🧩 Configuration
```
yamlbase_model: DopeorNope/SOLARC-M-10.7B
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: DopeorNope/SOLARC-M-10.7B
positive_prompts: [""]
- source_model: maywell/PiVoT-10.7B-Mistral-v0.2-RP
positive_prompts: [""]
- source_model: kyujinpy/Sakura-SOLAR-Instruct
positive_prompts: [""]
- source_model: jeonsworld/CarbonVillain-en-10.7B-v1
positive_prompts: [""]
```
## 💻 Usage
```
python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Steelskull/Lumosia-MoE-4x10.7"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |