File size: 5,127 Bytes
cbb6f2d afe8f1c 763903e 27fb5e9 afe8f1c cbb6f2d 828763c 763903e 828763c 763903e 828763c 763903e 9540e77 763903e afe8f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
---
license: apache-2.0
tags:
- mergekit
- merge
- Etheria
base_model:
- brucethemoose/Yi-34B-200K-DARE-megamerge-v8
- one-man-army/UNA-34Beagles-32K-bf16-v1
model-index:
- name: VerB-Etheria-55b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.96
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 81.48
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.78
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 57.52
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.45
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 28.81
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b
name: Open LLM Leaderboard
---
# VerB-Etheria-55b
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/sawfieuCbKgQHl4iQhDN7.png)
An attempt to make a functional goliath style merge to create a [Etheria] 55b-200k with two yi-34b-200k models, this is Version B or VerB, it is a Double
Model Passthrough merge. with a 50/50 split between high performing models.
# Roadmap:
Depending on quality, I Might private the other Version. Then generate a sacrificial 55b and perform a 55b Dare ties merge or Slerp merge.
1: If the Dual Model Merge performs well I will make a direct inverse of the config then merge.
2: If the single model performs well I will generate a 55b of the most performant model the either Slerp or Dare ties merge.
3: If both models perform well, then I will complete both 1 & 2 then change the naming scheme to match each of the new models.
### Configuration
The following YAML configuration was used to produce this model:
```yaml
dtype: bfloat16
slices:
- sources:
- model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8
layer_range: [0, 14]
- sources:
- model: one-man-army/UNA-34Beagles-32K-bf16-v1
layer_range: [7, 21]
- sources:
- model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8
layer_range: [15, 29]
- sources:
- model: one-man-army/UNA-34Beagles-32K-bf16-v1
layer_range: [22, 36]
- sources:
- model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8
layer_range: [30, 44]
- sources:
- model: one-man-army/UNA-34Beagles-32K-bf16-v1
layer_range: [37, 51]
- sources:
- model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8
layer_range: [45, 59]
merge_method: passthrough
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Steelskull__VerB-Etheria-55b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |63.83|
|AI2 Reasoning Challenge (25-Shot)|65.96|
|HellaSwag (10-Shot) |81.48|
|MMLU (5-Shot) |73.78|
|TruthfulQA (0-shot) |57.52|
|Winogrande (5-shot) |75.45|
|GSM8k (5-shot) |28.81|
|