Steve77 commited on
Commit
3ae1f75
·
verified ·
1 Parent(s): 21bc2f9

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,845 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: nomic-ai/modernbert-embed-base
3
+ language:
4
+ - fr
5
+ library_name: sentence-transformers
6
+ license: apache-2.0
7
+ metrics:
8
+ - cosine_accuracy@1
9
+ - cosine_accuracy@3
10
+ - cosine_accuracy@5
11
+ - cosine_accuracy@10
12
+ - cosine_precision@1
13
+ - cosine_precision@3
14
+ - cosine_precision@5
15
+ - cosine_precision@10
16
+ - cosine_recall@1
17
+ - cosine_recall@3
18
+ - cosine_recall@5
19
+ - cosine_recall@10
20
+ - cosine_ndcg@10
21
+ - cosine_ndcg@15
22
+ - cosine_ndcg@20
23
+ - cosine_mrr@10
24
+ - cosine_map@100
25
+ pipeline_tag: sentence-similarity
26
+ tags:
27
+ - sentence-transformers
28
+ - sentence-similarity
29
+ - feature-extraction
30
+ - generated_from_trainer
31
+ - dataset_size:47560
32
+ - loss:MatryoshkaLoss
33
+ - loss:MultipleNegativesRankingLoss
34
+ widget:
35
+ - source_sentence: Pourquoi l'enfant de Jéroboam sera-t-il le seul de sa maison à
36
+ être enterré?
37
+ sentences:
38
+ - Nathan le prophète.
39
+ - Parce qu'il est le seul de la maison de Jéroboam en qui se soit trouvé quelque
40
+ chose de bon devant l'Éternel, le Dieu d'Israël.
41
+ - Deux ans.
42
+ - source_sentence: Que dit le texte sur la foi capable de transporter des montagnes
43
+ sans charité?
44
+ sentences:
45
+ - Urie était un Héthien.
46
+ - Il dit que même avec une foi capable de transporter des montagnes, sans la charité,
47
+ cela ne vaut rien.
48
+ - David est allé se présenter devant l'Éternel et a exprimé son humilité et sa gratitude
49
+ envers Dieu.
50
+ - source_sentence: Quels sont les noms des fils de Schobal?
51
+ sentences:
52
+ - Reaja, Jachath, Achumaï et Lahad.
53
+ - Le côté du midi échut à Obed-Édom, et la maison des magasins à ses fils.
54
+ - Meschélémia avait dix-huit fils et frères vaillants.
55
+ - source_sentence: Qui a succédé au roi Asa après sa mort?
56
+ sentences:
57
+ - 'L''un dit: Moi, je suis de Paul! Et un autre: Moi, d''Apollos!'
58
+ - 'Neuf fils: Zemira, Joasch, Éliézer, Éljoénaï, Omri, Jerémoth, Abija, Anathoth
59
+ et Alameth, enregistrés au nombre de vingt mille deux cents.'
60
+ - Josaphat, son fils.
61
+ - source_sentence: Quelles tâches les Lévites devaient-ils accomplir dans le service
62
+ de la maison de l'Éternel?
63
+ sentences:
64
+ - Ils devaient prendre soin des parvis et des chambres, purifier toutes les choses
65
+ saintes, s'occuper des pains de proposition, de la fleur de farine pour les offrandes,
66
+ des galettes sans levain, des gâteaux cuits sur la plaque et des gâteaux frits,
67
+ et de toutes les mesures de capacité et de longueur.
68
+ - Les chefs des maisons paternelles, les chefs des tribus d'Israël, les chefs de
69
+ milliers et de centaines, et les intendants du roi.
70
+ - Les enfants sont considérés comme saints.
71
+ co2_eq_emissions:
72
+ emissions: 11.494424944753328
73
+ energy_consumed: 0.20511474053343792
74
+ source: codecarbon
75
+ training_type: fine-tuning
76
+ on_cloud: false
77
+ cpu_model: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
78
+ ram_total_size: 7.6847381591796875
79
+ hours_used: 6.806
80
+ hardware_used: 1 x NVIDIA GeForce GTX 1660 Ti
81
+ model-index:
82
+ - name: modernbert-embed-base-bible
83
+ results:
84
+ - task:
85
+ type: information-retrieval
86
+ name: Information Retrieval
87
+ dataset:
88
+ name: dim 768
89
+ type: dim_768
90
+ metrics:
91
+ - type: cosine_accuracy@1
92
+ value: 0.17498667614141056
93
+ name: Cosine Accuracy@1
94
+ - type: cosine_accuracy@3
95
+ value: 0.24835672410730147
96
+ name: Cosine Accuracy@3
97
+ - type: cosine_accuracy@5
98
+ value: 0.2762480014212116
99
+ name: Cosine Accuracy@5
100
+ - type: cosine_accuracy@10
101
+ value: 0.320305560490318
102
+ name: Cosine Accuracy@10
103
+ - type: cosine_precision@1
104
+ value: 0.17498667614141056
105
+ name: Cosine Precision@1
106
+ - type: cosine_precision@3
107
+ value: 0.08278557470243382
108
+ name: Cosine Precision@3
109
+ - type: cosine_precision@5
110
+ value: 0.05524960028424231
111
+ name: Cosine Precision@5
112
+ - type: cosine_precision@10
113
+ value: 0.0320305560490318
114
+ name: Cosine Precision@10
115
+ - type: cosine_recall@1
116
+ value: 0.17498667614141056
117
+ name: Cosine Recall@1
118
+ - type: cosine_recall@3
119
+ value: 0.24835672410730147
120
+ name: Cosine Recall@3
121
+ - type: cosine_recall@5
122
+ value: 0.2762480014212116
123
+ name: Cosine Recall@5
124
+ - type: cosine_recall@10
125
+ value: 0.320305560490318
126
+ name: Cosine Recall@10
127
+ - type: cosine_ndcg@10
128
+ value: 0.24430049048684818
129
+ name: Cosine Ndcg@10
130
+ - type: cosine_ndcg@15
131
+ value: 0.2525347835304927
132
+ name: Cosine Ndcg@15
133
+ - type: cosine_ndcg@20
134
+ value: 0.2574496509992833
135
+ name: Cosine Ndcg@20
136
+ - type: cosine_mrr@10
137
+ value: 0.2204687601338871
138
+ name: Cosine Mrr@10
139
+ - type: cosine_map@100
140
+ value: 0.22764969395073778
141
+ name: Cosine Map@100
142
+ - task:
143
+ type: information-retrieval
144
+ name: Information Retrieval
145
+ dataset:
146
+ name: dim 512
147
+ type: dim_512
148
+ metrics:
149
+ - type: cosine_accuracy@1
150
+ value: 0.17161129863208385
151
+ name: Cosine Accuracy@1
152
+ - type: cosine_accuracy@3
153
+ value: 0.24018475750577367
154
+ name: Cosine Accuracy@3
155
+ - type: cosine_accuracy@5
156
+ value: 0.2719843666725884
157
+ name: Cosine Accuracy@5
158
+ - type: cosine_accuracy@10
159
+ value: 0.31621957718955407
160
+ name: Cosine Accuracy@10
161
+ - type: cosine_precision@1
162
+ value: 0.17161129863208385
163
+ name: Cosine Precision@1
164
+ - type: cosine_precision@3
165
+ value: 0.08006158583525788
166
+ name: Cosine Precision@3
167
+ - type: cosine_precision@5
168
+ value: 0.05439687333451768
169
+ name: Cosine Precision@5
170
+ - type: cosine_precision@10
171
+ value: 0.03162195771895541
172
+ name: Cosine Precision@10
173
+ - type: cosine_recall@1
174
+ value: 0.17161129863208385
175
+ name: Cosine Recall@1
176
+ - type: cosine_recall@3
177
+ value: 0.24018475750577367
178
+ name: Cosine Recall@3
179
+ - type: cosine_recall@5
180
+ value: 0.2719843666725884
181
+ name: Cosine Recall@5
182
+ - type: cosine_recall@10
183
+ value: 0.31621957718955407
184
+ name: Cosine Recall@10
185
+ - type: cosine_ndcg@10
186
+ value: 0.23947113373513576
187
+ name: Cosine Ndcg@10
188
+ - type: cosine_ndcg@15
189
+ value: 0.24636222462199156
190
+ name: Cosine Ndcg@15
191
+ - type: cosine_ndcg@20
192
+ value: 0.2517242130957284
193
+ name: Cosine Ndcg@20
194
+ - type: cosine_mrr@10
195
+ value: 0.2154852845384024
196
+ name: Cosine Mrr@10
197
+ - type: cosine_map@100
198
+ value: 0.2225725360678114
199
+ name: Cosine Map@100
200
+ - task:
201
+ type: information-retrieval
202
+ name: Information Retrieval
203
+ dataset:
204
+ name: dim 256
205
+ type: dim_256
206
+ metrics:
207
+ - type: cosine_accuracy@1
208
+ value: 0.16024160596908865
209
+ name: Cosine Accuracy@1
210
+ - type: cosine_accuracy@3
211
+ value: 0.22757150470776336
212
+ name: Cosine Accuracy@3
213
+ - type: cosine_accuracy@5
214
+ value: 0.2602593711138746
215
+ name: Cosine Accuracy@5
216
+ - type: cosine_accuracy@10
217
+ value: 0.3075146562444484
218
+ name: Cosine Accuracy@10
219
+ - type: cosine_precision@1
220
+ value: 0.16024160596908865
221
+ name: Cosine Precision@1
222
+ - type: cosine_precision@3
223
+ value: 0.07585716823592112
224
+ name: Cosine Precision@3
225
+ - type: cosine_precision@5
226
+ value: 0.052051874222774915
227
+ name: Cosine Precision@5
228
+ - type: cosine_precision@10
229
+ value: 0.030751465624444838
230
+ name: Cosine Precision@10
231
+ - type: cosine_recall@1
232
+ value: 0.16024160596908865
233
+ name: Cosine Recall@1
234
+ - type: cosine_recall@3
235
+ value: 0.22757150470776336
236
+ name: Cosine Recall@3
237
+ - type: cosine_recall@5
238
+ value: 0.2602593711138746
239
+ name: Cosine Recall@5
240
+ - type: cosine_recall@10
241
+ value: 0.3075146562444484
242
+ name: Cosine Recall@10
243
+ - type: cosine_ndcg@10
244
+ value: 0.22844579790475078
245
+ name: Cosine Ndcg@10
246
+ - type: cosine_ndcg@15
247
+ value: 0.2357050364715922
248
+ name: Cosine Ndcg@15
249
+ - type: cosine_ndcg@20
250
+ value: 0.24051535612507915
251
+ name: Cosine Ndcg@20
252
+ - type: cosine_mrr@10
253
+ value: 0.20381231547513284
254
+ name: Cosine Mrr@10
255
+ - type: cosine_map@100
256
+ value: 0.21077486383464478
257
+ name: Cosine Map@100
258
+ - task:
259
+ type: information-retrieval
260
+ name: Information Retrieval
261
+ dataset:
262
+ name: dim 128
263
+ type: dim_128
264
+ metrics:
265
+ - type: cosine_accuracy@1
266
+ value: 0.14372002131817374
267
+ name: Cosine Accuracy@1
268
+ - type: cosine_accuracy@3
269
+ value: 0.20465446793391368
270
+ name: Cosine Accuracy@3
271
+ - type: cosine_accuracy@5
272
+ value: 0.23307869959140168
273
+ name: Cosine Accuracy@5
274
+ - type: cosine_accuracy@10
275
+ value: 0.279445727482679
276
+ name: Cosine Accuracy@10
277
+ - type: cosine_precision@1
278
+ value: 0.14372002131817374
279
+ name: Cosine Precision@1
280
+ - type: cosine_precision@3
281
+ value: 0.06821815597797122
282
+ name: Cosine Precision@3
283
+ - type: cosine_precision@5
284
+ value: 0.04661573991828033
285
+ name: Cosine Precision@5
286
+ - type: cosine_precision@10
287
+ value: 0.0279445727482679
288
+ name: Cosine Precision@10
289
+ - type: cosine_recall@1
290
+ value: 0.14372002131817374
291
+ name: Cosine Recall@1
292
+ - type: cosine_recall@3
293
+ value: 0.20465446793391368
294
+ name: Cosine Recall@3
295
+ - type: cosine_recall@5
296
+ value: 0.23307869959140168
297
+ name: Cosine Recall@5
298
+ - type: cosine_recall@10
299
+ value: 0.279445727482679
300
+ name: Cosine Recall@10
301
+ - type: cosine_ndcg@10
302
+ value: 0.20572968417646773
303
+ name: Cosine Ndcg@10
304
+ - type: cosine_ndcg@15
305
+ value: 0.21411686675503838
306
+ name: Cosine Ndcg@15
307
+ - type: cosine_ndcg@20
308
+ value: 0.21935674398662894
309
+ name: Cosine Ndcg@20
310
+ - type: cosine_mrr@10
311
+ value: 0.1828928000406064
312
+ name: Cosine Mrr@10
313
+ - type: cosine_map@100
314
+ value: 0.19012440317942259
315
+ name: Cosine Map@100
316
+ - task:
317
+ type: information-retrieval
318
+ name: Information Retrieval
319
+ dataset:
320
+ name: dim 64
321
+ type: dim_64
322
+ metrics:
323
+ - type: cosine_accuracy@1
324
+ value: 0.11067685201634393
325
+ name: Cosine Accuracy@1
326
+ - type: cosine_accuracy@3
327
+ value: 0.15953100017765146
328
+ name: Cosine Accuracy@3
329
+ - type: cosine_accuracy@5
330
+ value: 0.18617871735654645
331
+ name: Cosine Accuracy@5
332
+ - type: cosine_accuracy@10
333
+ value: 0.22721620181204477
334
+ name: Cosine Accuracy@10
335
+ - type: cosine_precision@1
336
+ value: 0.11067685201634393
337
+ name: Cosine Precision@1
338
+ - type: cosine_precision@3
339
+ value: 0.05317700005921715
340
+ name: Cosine Precision@3
341
+ - type: cosine_precision@5
342
+ value: 0.03723574347130929
343
+ name: Cosine Precision@5
344
+ - type: cosine_precision@10
345
+ value: 0.022721620181204476
346
+ name: Cosine Precision@10
347
+ - type: cosine_recall@1
348
+ value: 0.11067685201634393
349
+ name: Cosine Recall@1
350
+ - type: cosine_recall@3
351
+ value: 0.15953100017765146
352
+ name: Cosine Recall@3
353
+ - type: cosine_recall@5
354
+ value: 0.18617871735654645
355
+ name: Cosine Recall@5
356
+ - type: cosine_recall@10
357
+ value: 0.22721620181204477
358
+ name: Cosine Recall@10
359
+ - type: cosine_ndcg@10
360
+ value: 0.16327341570689552
361
+ name: Cosine Ndcg@10
362
+ - type: cosine_ndcg@15
363
+ value: 0.1699977455983759
364
+ name: Cosine Ndcg@15
365
+ - type: cosine_ndcg@20
366
+ value: 0.17462327712912765
367
+ name: Cosine Ndcg@20
368
+ - type: cosine_mrr@10
369
+ value: 0.1435284115422685
370
+ name: Cosine Mrr@10
371
+ - type: cosine_map@100
372
+ value: 0.1500325081763102
373
+ name: Cosine Map@100
374
+ ---
375
+
376
+ # modernbert-embed-base-bible
377
+
378
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
379
+
380
+ ## Model Details
381
+
382
+ ### Model Description
383
+ - **Model Type:** Sentence Transformer
384
+ - **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision bb0033c9f3def40c3c5b26ff0b53c74f3320d703 -->
385
+ - **Maximum Sequence Length:** 8192 tokens
386
+ - **Output Dimensionality:** 768 dimensions
387
+ - **Similarity Function:** Cosine Similarity
388
+ - **Training Dataset:**
389
+ - json
390
+ - **Language:** fr
391
+ - **License:** apache-2.0
392
+
393
+ ### Model Sources
394
+
395
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
396
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
397
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
398
+
399
+ ### Full Model Architecture
400
+
401
+ ```
402
+ SentenceTransformer(
403
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
404
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
405
+ (2): Normalize()
406
+ )
407
+ ```
408
+
409
+ ## Usage
410
+
411
+ ### Direct Usage (Sentence Transformers)
412
+
413
+ First install the Sentence Transformers library:
414
+
415
+ ```bash
416
+ pip install -U sentence-transformers
417
+ ```
418
+
419
+ Then you can load this model and run inference.
420
+ ```python
421
+ from sentence_transformers import SentenceTransformer
422
+
423
+ # Download from the 🤗 Hub
424
+ model = SentenceTransformer("Steve77/modernbert-embed-base-bible")
425
+ # Run inference
426
+ sentences = [
427
+ "Quelles tâches les Lévites devaient-ils accomplir dans le service de la maison de l'Éternel?",
428
+ "Ils devaient prendre soin des parvis et des chambres, purifier toutes les choses saintes, s'occuper des pains de proposition, de la fleur de farine pour les offrandes, des galettes sans levain, des gâteaux cuits sur la plaque et des gâteaux frits, et de toutes les mesures de capacité et de longueur.",
429
+ "Les chefs des maisons paternelles, les chefs des tribus d'Israël, les chefs de milliers et de centaines, et les intendants du roi.",
430
+ ]
431
+ embeddings = model.encode(sentences)
432
+ print(embeddings.shape)
433
+ # [3, 768]
434
+
435
+ # Get the similarity scores for the embeddings
436
+ similarities = model.similarity(embeddings, embeddings)
437
+ print(similarities.shape)
438
+ # [3, 3]
439
+ ```
440
+
441
+ <!--
442
+ ### Direct Usage (Transformers)
443
+
444
+ <details><summary>Click to see the direct usage in Transformers</summary>
445
+
446
+ </details>
447
+ -->
448
+
449
+ <!--
450
+ ### Downstream Usage (Sentence Transformers)
451
+
452
+ You can finetune this model on your own dataset.
453
+
454
+ <details><summary>Click to expand</summary>
455
+
456
+ </details>
457
+ -->
458
+
459
+ <!--
460
+ ### Out-of-Scope Use
461
+
462
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
463
+ -->
464
+
465
+ ## Evaluation
466
+
467
+ ### Metrics
468
+
469
+ #### Information Retrieval
470
+
471
+ * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
472
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
473
+
474
+ | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
475
+ |:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
476
+ | cosine_accuracy@1 | 0.175 | 0.1716 | 0.1602 | 0.1437 | 0.1107 |
477
+ | cosine_accuracy@3 | 0.2484 | 0.2402 | 0.2276 | 0.2047 | 0.1595 |
478
+ | cosine_accuracy@5 | 0.2762 | 0.272 | 0.2603 | 0.2331 | 0.1862 |
479
+ | cosine_accuracy@10 | 0.3203 | 0.3162 | 0.3075 | 0.2794 | 0.2272 |
480
+ | cosine_precision@1 | 0.175 | 0.1716 | 0.1602 | 0.1437 | 0.1107 |
481
+ | cosine_precision@3 | 0.0828 | 0.0801 | 0.0759 | 0.0682 | 0.0532 |
482
+ | cosine_precision@5 | 0.0552 | 0.0544 | 0.0521 | 0.0466 | 0.0372 |
483
+ | cosine_precision@10 | 0.032 | 0.0316 | 0.0308 | 0.0279 | 0.0227 |
484
+ | cosine_recall@1 | 0.175 | 0.1716 | 0.1602 | 0.1437 | 0.1107 |
485
+ | cosine_recall@3 | 0.2484 | 0.2402 | 0.2276 | 0.2047 | 0.1595 |
486
+ | cosine_recall@5 | 0.2762 | 0.272 | 0.2603 | 0.2331 | 0.1862 |
487
+ | cosine_recall@10 | 0.3203 | 0.3162 | 0.3075 | 0.2794 | 0.2272 |
488
+ | cosine_ndcg@10 | 0.2443 | 0.2395 | 0.2284 | 0.2057 | 0.1633 |
489
+ | cosine_ndcg@15 | 0.2525 | 0.2464 | 0.2357 | 0.2141 | 0.17 |
490
+ | **cosine_ndcg@20** | **0.2574** | **0.2517** | **0.2405** | **0.2194** | **0.1746** |
491
+ | cosine_mrr@10 | 0.2205 | 0.2155 | 0.2038 | 0.1829 | 0.1435 |
492
+ | cosine_map@100 | 0.2276 | 0.2226 | 0.2108 | 0.1901 | 0.15 |
493
+
494
+ <!--
495
+ ## Bias, Risks and Limitations
496
+
497
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
498
+ -->
499
+
500
+ <!--
501
+ ### Recommendations
502
+
503
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
504
+ -->
505
+
506
+ ## Training Details
507
+
508
+ ### Training Dataset
509
+
510
+ #### json
511
+
512
+ * Dataset: json
513
+ * Size: 47,560 training samples
514
+ * Columns: <code>anchor</code> and <code>positive</code>
515
+ * Approximate statistics based on the first 1000 samples:
516
+ | | anchor | positive |
517
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
518
+ | type | string | string |
519
+ | details | <ul><li>min: 8 tokens</li><li>mean: 21.11 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 24.84 tokens</li><li>max: 108 tokens</li></ul> |
520
+ * Samples:
521
+ | anchor | positive |
522
+ |:------------------------------------------------------|:----------------------------------------------------|
523
+ | <code>Quels sont les noms des fils de Schobal?</code> | <code>Aljan, Manahath, Ébal, Schephi et Onam</code> |
524
+ | <code>Quels sont les noms des fils de Tsibeon?</code> | <code>Ajja et Ana</code> |
525
+ | <code>Qui est le fils d'Ana?</code> | <code>Dischon</code> |
526
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
527
+ ```json
528
+ {
529
+ "loss": "MultipleNegativesRankingLoss",
530
+ "matryoshka_dims": [
531
+ 768,
532
+ 512,
533
+ 256,
534
+ 128,
535
+ 64
536
+ ],
537
+ "matryoshka_weights": [
538
+ 1,
539
+ 1,
540
+ 1,
541
+ 1,
542
+ 1
543
+ ],
544
+ "n_dims_per_step": -1
545
+ }
546
+ ```
547
+
548
+ ### Training Hyperparameters
549
+ #### Non-Default Hyperparameters
550
+
551
+ - `eval_strategy`: epoch
552
+ - `per_device_train_batch_size`: 16
553
+ - `per_device_eval_batch_size`: 16
554
+ - `gradient_accumulation_steps`: 16
555
+ - `learning_rate`: 2e-05
556
+ - `num_train_epochs`: 4
557
+ - `lr_scheduler_type`: cosine
558
+ - `warmup_ratio`: 0.1
559
+ - `bf16`: True
560
+ - `load_best_model_at_end`: True
561
+ - `optim`: adamw_torch_fused
562
+ - `batch_sampler`: no_duplicates
563
+
564
+ #### All Hyperparameters
565
+ <details><summary>Click to expand</summary>
566
+
567
+ - `overwrite_output_dir`: False
568
+ - `do_predict`: False
569
+ - `eval_strategy`: epoch
570
+ - `prediction_loss_only`: True
571
+ - `per_device_train_batch_size`: 16
572
+ - `per_device_eval_batch_size`: 16
573
+ - `per_gpu_train_batch_size`: None
574
+ - `per_gpu_eval_batch_size`: None
575
+ - `gradient_accumulation_steps`: 16
576
+ - `eval_accumulation_steps`: None
577
+ - `torch_empty_cache_steps`: None
578
+ - `learning_rate`: 2e-05
579
+ - `weight_decay`: 0.0
580
+ - `adam_beta1`: 0.9
581
+ - `adam_beta2`: 0.999
582
+ - `adam_epsilon`: 1e-08
583
+ - `max_grad_norm`: 1.0
584
+ - `num_train_epochs`: 4
585
+ - `max_steps`: -1
586
+ - `lr_scheduler_type`: cosine
587
+ - `lr_scheduler_kwargs`: {}
588
+ - `warmup_ratio`: 0.1
589
+ - `warmup_steps`: 0
590
+ - `log_level`: passive
591
+ - `log_level_replica`: warning
592
+ - `log_on_each_node`: True
593
+ - `logging_nan_inf_filter`: True
594
+ - `save_safetensors`: True
595
+ - `save_on_each_node`: False
596
+ - `save_only_model`: False
597
+ - `restore_callback_states_from_checkpoint`: False
598
+ - `no_cuda`: False
599
+ - `use_cpu`: False
600
+ - `use_mps_device`: False
601
+ - `seed`: 42
602
+ - `data_seed`: None
603
+ - `jit_mode_eval`: False
604
+ - `use_ipex`: False
605
+ - `bf16`: True
606
+ - `fp16`: False
607
+ - `fp16_opt_level`: O1
608
+ - `half_precision_backend`: auto
609
+ - `bf16_full_eval`: False
610
+ - `fp16_full_eval`: False
611
+ - `tf32`: None
612
+ - `local_rank`: 0
613
+ - `ddp_backend`: None
614
+ - `tpu_num_cores`: None
615
+ - `tpu_metrics_debug`: False
616
+ - `debug`: []
617
+ - `dataloader_drop_last`: False
618
+ - `dataloader_num_workers`: 0
619
+ - `dataloader_prefetch_factor`: None
620
+ - `past_index`: -1
621
+ - `disable_tqdm`: False
622
+ - `remove_unused_columns`: True
623
+ - `label_names`: None
624
+ - `load_best_model_at_end`: True
625
+ - `ignore_data_skip`: False
626
+ - `fsdp`: []
627
+ - `fsdp_min_num_params`: 0
628
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
629
+ - `fsdp_transformer_layer_cls_to_wrap`: None
630
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
631
+ - `deepspeed`: None
632
+ - `label_smoothing_factor`: 0.0
633
+ - `optim`: adamw_torch_fused
634
+ - `optim_args`: None
635
+ - `adafactor`: False
636
+ - `group_by_length`: False
637
+ - `length_column_name`: length
638
+ - `ddp_find_unused_parameters`: None
639
+ - `ddp_bucket_cap_mb`: None
640
+ - `ddp_broadcast_buffers`: False
641
+ - `dataloader_pin_memory`: True
642
+ - `dataloader_persistent_workers`: False
643
+ - `skip_memory_metrics`: True
644
+ - `use_legacy_prediction_loop`: False
645
+ - `push_to_hub`: False
646
+ - `resume_from_checkpoint`: None
647
+ - `hub_model_id`: None
648
+ - `hub_strategy`: every_save
649
+ - `hub_private_repo`: None
650
+ - `hub_always_push`: False
651
+ - `gradient_checkpointing`: False
652
+ - `gradient_checkpointing_kwargs`: None
653
+ - `include_inputs_for_metrics`: False
654
+ - `include_for_metrics`: []
655
+ - `eval_do_concat_batches`: True
656
+ - `fp16_backend`: auto
657
+ - `push_to_hub_model_id`: None
658
+ - `push_to_hub_organization`: None
659
+ - `mp_parameters`:
660
+ - `auto_find_batch_size`: False
661
+ - `full_determinism`: False
662
+ - `torchdynamo`: None
663
+ - `ray_scope`: last
664
+ - `ddp_timeout`: 1800
665
+ - `torch_compile`: False
666
+ - `torch_compile_backend`: None
667
+ - `torch_compile_mode`: None
668
+ - `dispatch_batches`: None
669
+ - `split_batches`: None
670
+ - `include_tokens_per_second`: False
671
+ - `include_num_input_tokens_seen`: False
672
+ - `neftune_noise_alpha`: None
673
+ - `optim_target_modules`: None
674
+ - `batch_eval_metrics`: False
675
+ - `eval_on_start`: False
676
+ - `use_liger_kernel`: False
677
+ - `eval_use_gather_object`: False
678
+ - `average_tokens_across_devices`: False
679
+ - `prompts`: None
680
+ - `batch_sampler`: no_duplicates
681
+ - `multi_dataset_batch_sampler`: proportional
682
+
683
+ </details>
684
+
685
+ ### Training Logs
686
+ | Epoch | Step | Training Loss | dim_768_cosine_ndcg@20 | dim_512_cosine_ndcg@20 | dim_256_cosine_ndcg@20 | dim_128_cosine_ndcg@20 | dim_64_cosine_ndcg@20 |
687
+ |:----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
688
+ | 0.0538 | 10 | 12.274 | - | - | - | - | - |
689
+ | 0.1076 | 20 | 11.5084 | - | - | - | - | - |
690
+ | 0.1615 | 30 | 10.5276 | - | - | - | - | - |
691
+ | 0.2153 | 40 | 9.0432 | - | - | - | - | - |
692
+ | 0.2691 | 50 | 7.572 | - | - | - | - | - |
693
+ | 0.3229 | 60 | 7.7696 | - | - | - | - | - |
694
+ | 0.3767 | 70 | 6.5673 | - | - | - | - | - |
695
+ | 0.4305 | 80 | 6.6586 | - | - | - | - | - |
696
+ | 0.4844 | 90 | 5.5276 | - | - | - | - | - |
697
+ | 0.5382 | 100 | 5.9891 | - | - | - | - | - |
698
+ | 0.5920 | 110 | 5.2983 | - | - | - | - | - |
699
+ | 0.6458 | 120 | 5.6242 | - | - | - | - | - |
700
+ | 0.6996 | 130 | 5.498 | - | - | - | - | - |
701
+ | 0.7534 | 140 | 4.4201 | - | - | - | - | - |
702
+ | 0.8073 | 150 | 4.3818 | - | - | - | - | - |
703
+ | 0.8611 | 160 | 4.2175 | - | - | - | - | - |
704
+ | 0.9149 | 170 | 4.2341 | - | - | - | - | - |
705
+ | 0.9687 | 180 | 4.3349 | - | - | - | - | - |
706
+ | 0.9956 | 185 | - | 0.2664 | 0.2607 | 0.2508 | 0.2263 | 0.1796 |
707
+ | 1.0269 | 190 | 4.6803 | - | - | - | - | - |
708
+ | 1.0807 | 200 | 3.877 | - | - | - | - | - |
709
+ | 1.1345 | 210 | 4.0309 | - | - | - | - | - |
710
+ | 1.1884 | 220 | 4.0755 | - | - | - | - | - |
711
+ | 1.2422 | 230 | 3.9068 | - | - | - | - | - |
712
+ | 1.2960 | 240 | 4.188 | - | - | - | - | - |
713
+ | 1.3498 | 250 | 4.3417 | - | - | - | - | - |
714
+ | 1.4036 | 260 | 4.0526 | - | - | - | - | - |
715
+ | 1.4575 | 270 | 3.3933 | - | - | - | - | - |
716
+ | 1.5113 | 280 | 3.8309 | - | - | - | - | - |
717
+ | 1.5651 | 290 | 3.5633 | - | - | - | - | - |
718
+ | 1.6189 | 300 | 3.8179 | - | - | - | - | - |
719
+ | 1.6727 | 310 | 4.0671 | - | - | - | - | - |
720
+ | 1.7265 | 320 | 3.3919 | - | - | - | - | - |
721
+ | 1.7804 | 330 | 2.6578 | - | - | - | - | - |
722
+ | 1.8342 | 340 | 2.6953 | - | - | - | - | - |
723
+ | 1.8880 | 350 | 2.8858 | - | - | - | - | - |
724
+ | 1.9418 | 360 | 2.8933 | - | - | - | - | - |
725
+ | **1.9956** | **370** | **2.9603** | **0.2775** | **0.2737** | **0.2637** | **0.2402** | **0.1916** |
726
+ | 2.0538 | 380 | 3.3361 | - | - | - | - | - |
727
+ | 2.1076 | 390 | 2.7904 | - | - | - | - | - |
728
+ | 2.1615 | 400 | 3.0108 | - | - | - | - | - |
729
+ | 2.2153 | 410 | 2.8917 | - | - | - | - | - |
730
+ | 2.2691 | 420 | 3.0295 | - | - | - | - | - |
731
+ | 2.3229 | 430 | 3.5609 | - | - | - | - | - |
732
+ | 2.3767 | 440 | 2.7722 | - | - | - | - | - |
733
+ | 2.4305 | 450 | 3.2115 | - | - | - | - | - |
734
+ | 2.4844 | 460 | 2.6333 | - | - | - | - | - |
735
+ | 2.5382 | 470 | 3.2503 | - | - | - | - | - |
736
+ | 2.5920 | 480 | 2.7708 | - | - | - | - | - |
737
+ | 2.6458 | 490 | 3.167 | - | - | - | - | - |
738
+ | 2.6996 | 500 | 3.1447 | - | - | - | - | - |
739
+ | 2.7534 | 510 | 2.0428 | - | - | - | - | - |
740
+ | 2.8073 | 520 | 2.0001 | - | - | - | - | - |
741
+ | 2.8611 | 530 | 2.0826 | - | - | - | - | - |
742
+ | 2.9149 | 540 | 2.0853 | - | - | - | - | - |
743
+ | 2.9687 | 550 | 2.2365 | - | - | - | - | - |
744
+ | 2.9956 | 555 | - | 0.2660 | 0.2604 | 0.2509 | 0.2266 | 0.1810 |
745
+ | 3.0269 | 560 | 2.762 | - | - | - | - | - |
746
+ | 3.0807 | 570 | 2.1219 | - | - | - | - | - |
747
+ | 3.1345 | 580 | 2.2908 | - | - | - | - | - |
748
+ | 3.1884 | 590 | 2.6195 | - | - | - | - | - |
749
+ | 3.2422 | 600 | 2.3468 | - | - | - | - | - |
750
+ | 3.2960 | 610 | 2.7504 | - | - | - | - | - |
751
+ | 3.3498 | 620 | 2.9486 | - | - | - | - | - |
752
+ | 3.4036 | 630 | 2.7281 | - | - | - | - | - |
753
+ | 3.4575 | 640 | 2.188 | - | - | - | - | - |
754
+ | 3.5113 | 650 | 2.5494 | - | - | - | - | - |
755
+ | 3.5651 | 660 | 2.426 | - | - | - | - | - |
756
+ | 3.6189 | 670 | 2.6478 | - | - | - | - | - |
757
+ | 3.6727 | 680 | 2.9209 | - | - | - | - | - |
758
+ | 3.7265 | 690 | 2.3512 | - | - | - | - | - |
759
+ | 3.7804 | 700 | 1.6746 | - | - | - | - | - |
760
+ | 3.8342 | 710 | 1.739 | - | - | - | - | - |
761
+ | 3.8880 | 720 | 1.951 | - | - | - | - | - |
762
+ | 3.9418 | 730 | 1.9886 | - | - | - | - | - |
763
+ | 3.9956 | 740 | 2.1022 | 0.2574 | 0.2517 | 0.2405 | 0.2194 | 0.1746 |
764
+
765
+ * The bold row denotes the saved checkpoint.
766
+
767
+ ### Environmental Impact
768
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
769
+ - **Energy Consumed**: 0.205 kWh
770
+ - **Carbon Emitted**: 0.011 kg of CO2
771
+ - **Hours Used**: 6.806 hours
772
+
773
+ ### Training Hardware
774
+ - **On Cloud**: No
775
+ - **GPU Model**: 1 x NVIDIA GeForce GTX 1660 Ti
776
+ - **CPU Model**: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
777
+ - **RAM Size**: 7.68 GB
778
+
779
+ ### Framework Versions
780
+ - Python: 3.11.11
781
+ - Sentence Transformers: 3.3.1
782
+ - Transformers: 4.48.0.dev0
783
+ - PyTorch: 2.5.1
784
+ - Accelerate: 1.2.1
785
+ - Datasets: 2.19.1
786
+ - Tokenizers: 0.21.0
787
+
788
+ ## Citation
789
+
790
+ ### BibTeX
791
+
792
+ #### Sentence Transformers
793
+ ```bibtex
794
+ @inproceedings{reimers-2019-sentence-bert,
795
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
796
+ author = "Reimers, Nils and Gurevych, Iryna",
797
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
798
+ month = "11",
799
+ year = "2019",
800
+ publisher = "Association for Computational Linguistics",
801
+ url = "https://arxiv.org/abs/1908.10084",
802
+ }
803
+ ```
804
+
805
+ #### MatryoshkaLoss
806
+ ```bibtex
807
+ @misc{kusupati2024matryoshka,
808
+ title={Matryoshka Representation Learning},
809
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
810
+ year={2024},
811
+ eprint={2205.13147},
812
+ archivePrefix={arXiv},
813
+ primaryClass={cs.LG}
814
+ }
815
+ ```
816
+
817
+ #### MultipleNegativesRankingLoss
818
+ ```bibtex
819
+ @misc{henderson2017efficient,
820
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
821
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
822
+ year={2017},
823
+ eprint={1705.00652},
824
+ archivePrefix={arXiv},
825
+ primaryClass={cs.CL}
826
+ }
827
+ ```
828
+
829
+ <!--
830
+ ## Glossary
831
+
832
+ *Clearly define terms in order to be accessible across audiences.*
833
+ -->
834
+
835
+ <!--
836
+ ## Model Card Authors
837
+
838
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
839
+ -->
840
+
841
+ <!--
842
+ ## Model Card Contact
843
+
844
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
845
+ -->
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nomic-ai/modernbert-embed-base",
3
+ "architectures": [
4
+ "ModernBertModel"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 50281,
9
+ "classifier_activation": "gelu",
10
+ "classifier_bias": false,
11
+ "classifier_dropout": 0.0,
12
+ "classifier_pooling": "mean",
13
+ "cls_token_id": 50281,
14
+ "decoder_bias": true,
15
+ "deterministic_flash_attn": false,
16
+ "embedding_dropout": 0.0,
17
+ "eos_token_id": 50282,
18
+ "global_attn_every_n_layers": 3,
19
+ "global_rope_theta": 160000.0,
20
+ "gradient_checkpointing": false,
21
+ "hidden_activation": "gelu",
22
+ "hidden_size": 768,
23
+ "initializer_cutoff_factor": 2.0,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 1152,
26
+ "layer_norm_eps": 1e-05,
27
+ "local_attention": 128,
28
+ "local_rope_theta": 10000.0,
29
+ "max_position_embeddings": 8192,
30
+ "mlp_bias": false,
31
+ "mlp_dropout": 0.0,
32
+ "model_type": "modernbert",
33
+ "norm_bias": false,
34
+ "norm_eps": 1e-05,
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 22,
37
+ "pad_token_id": 50283,
38
+ "position_embedding_type": "absolute",
39
+ "reference_compile": true,
40
+ "sep_token_id": 50282,
41
+ "sparse_pred_ignore_index": -100,
42
+ "sparse_prediction": false,
43
+ "torch_dtype": "float32",
44
+ "transformers_version": "4.48.0.dev0",
45
+ "vocab_size": 50368
46
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0.dev0",
5
+ "pytorch": "2.5.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e039d5ff2db6b4b3f9ad910e8a114e383c580a64c6b30cf3797ce7f7c046b0d9
3
+ size 596070136
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "50280": {
228
+ "content": "[UNK]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "50281": {
236
+ "content": "[CLS]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "50282": {
244
+ "content": "[SEP]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "50283": {
252
+ "content": "[PAD]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
+ "lstrip": true,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
+ }
931
+ },
932
+ "clean_up_tokenization_spaces": true,
933
+ "cls_token": "[CLS]",
934
+ "extra_special_tokens": {},
935
+ "mask_token": "[MASK]",
936
+ "model_input_names": [
937
+ "input_ids",
938
+ "attention_mask"
939
+ ],
940
+ "model_max_length": 8192,
941
+ "pad_token": "[PAD]",
942
+ "sep_token": "[SEP]",
943
+ "tokenizer_class": "PreTrainedTokenizerFast",
944
+ "unk_token": "[UNK]"
945
+ }