Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +845 -0
- config.json +46 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +945 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,845 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: nomic-ai/modernbert-embed-base
|
3 |
+
language:
|
4 |
+
- fr
|
5 |
+
library_name: sentence-transformers
|
6 |
+
license: apache-2.0
|
7 |
+
metrics:
|
8 |
+
- cosine_accuracy@1
|
9 |
+
- cosine_accuracy@3
|
10 |
+
- cosine_accuracy@5
|
11 |
+
- cosine_accuracy@10
|
12 |
+
- cosine_precision@1
|
13 |
+
- cosine_precision@3
|
14 |
+
- cosine_precision@5
|
15 |
+
- cosine_precision@10
|
16 |
+
- cosine_recall@1
|
17 |
+
- cosine_recall@3
|
18 |
+
- cosine_recall@5
|
19 |
+
- cosine_recall@10
|
20 |
+
- cosine_ndcg@10
|
21 |
+
- cosine_ndcg@15
|
22 |
+
- cosine_ndcg@20
|
23 |
+
- cosine_mrr@10
|
24 |
+
- cosine_map@100
|
25 |
+
pipeline_tag: sentence-similarity
|
26 |
+
tags:
|
27 |
+
- sentence-transformers
|
28 |
+
- sentence-similarity
|
29 |
+
- feature-extraction
|
30 |
+
- generated_from_trainer
|
31 |
+
- dataset_size:47560
|
32 |
+
- loss:MatryoshkaLoss
|
33 |
+
- loss:MultipleNegativesRankingLoss
|
34 |
+
widget:
|
35 |
+
- source_sentence: Pourquoi l'enfant de Jéroboam sera-t-il le seul de sa maison à
|
36 |
+
être enterré?
|
37 |
+
sentences:
|
38 |
+
- Nathan le prophète.
|
39 |
+
- Parce qu'il est le seul de la maison de Jéroboam en qui se soit trouvé quelque
|
40 |
+
chose de bon devant l'Éternel, le Dieu d'Israël.
|
41 |
+
- Deux ans.
|
42 |
+
- source_sentence: Que dit le texte sur la foi capable de transporter des montagnes
|
43 |
+
sans charité?
|
44 |
+
sentences:
|
45 |
+
- Urie était un Héthien.
|
46 |
+
- Il dit que même avec une foi capable de transporter des montagnes, sans la charité,
|
47 |
+
cela ne vaut rien.
|
48 |
+
- David est allé se présenter devant l'Éternel et a exprimé son humilité et sa gratitude
|
49 |
+
envers Dieu.
|
50 |
+
- source_sentence: Quels sont les noms des fils de Schobal?
|
51 |
+
sentences:
|
52 |
+
- Reaja, Jachath, Achumaï et Lahad.
|
53 |
+
- Le côté du midi échut à Obed-Édom, et la maison des magasins à ses fils.
|
54 |
+
- Meschélémia avait dix-huit fils et frères vaillants.
|
55 |
+
- source_sentence: Qui a succédé au roi Asa après sa mort?
|
56 |
+
sentences:
|
57 |
+
- 'L''un dit: Moi, je suis de Paul! Et un autre: Moi, d''Apollos!'
|
58 |
+
- 'Neuf fils: Zemira, Joasch, Éliézer, Éljoénaï, Omri, Jerémoth, Abija, Anathoth
|
59 |
+
et Alameth, enregistrés au nombre de vingt mille deux cents.'
|
60 |
+
- Josaphat, son fils.
|
61 |
+
- source_sentence: Quelles tâches les Lévites devaient-ils accomplir dans le service
|
62 |
+
de la maison de l'Éternel?
|
63 |
+
sentences:
|
64 |
+
- Ils devaient prendre soin des parvis et des chambres, purifier toutes les choses
|
65 |
+
saintes, s'occuper des pains de proposition, de la fleur de farine pour les offrandes,
|
66 |
+
des galettes sans levain, des gâteaux cuits sur la plaque et des gâteaux frits,
|
67 |
+
et de toutes les mesures de capacité et de longueur.
|
68 |
+
- Les chefs des maisons paternelles, les chefs des tribus d'Israël, les chefs de
|
69 |
+
milliers et de centaines, et les intendants du roi.
|
70 |
+
- Les enfants sont considérés comme saints.
|
71 |
+
co2_eq_emissions:
|
72 |
+
emissions: 11.494424944753328
|
73 |
+
energy_consumed: 0.20511474053343792
|
74 |
+
source: codecarbon
|
75 |
+
training_type: fine-tuning
|
76 |
+
on_cloud: false
|
77 |
+
cpu_model: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
|
78 |
+
ram_total_size: 7.6847381591796875
|
79 |
+
hours_used: 6.806
|
80 |
+
hardware_used: 1 x NVIDIA GeForce GTX 1660 Ti
|
81 |
+
model-index:
|
82 |
+
- name: modernbert-embed-base-bible
|
83 |
+
results:
|
84 |
+
- task:
|
85 |
+
type: information-retrieval
|
86 |
+
name: Information Retrieval
|
87 |
+
dataset:
|
88 |
+
name: dim 768
|
89 |
+
type: dim_768
|
90 |
+
metrics:
|
91 |
+
- type: cosine_accuracy@1
|
92 |
+
value: 0.17498667614141056
|
93 |
+
name: Cosine Accuracy@1
|
94 |
+
- type: cosine_accuracy@3
|
95 |
+
value: 0.24835672410730147
|
96 |
+
name: Cosine Accuracy@3
|
97 |
+
- type: cosine_accuracy@5
|
98 |
+
value: 0.2762480014212116
|
99 |
+
name: Cosine Accuracy@5
|
100 |
+
- type: cosine_accuracy@10
|
101 |
+
value: 0.320305560490318
|
102 |
+
name: Cosine Accuracy@10
|
103 |
+
- type: cosine_precision@1
|
104 |
+
value: 0.17498667614141056
|
105 |
+
name: Cosine Precision@1
|
106 |
+
- type: cosine_precision@3
|
107 |
+
value: 0.08278557470243382
|
108 |
+
name: Cosine Precision@3
|
109 |
+
- type: cosine_precision@5
|
110 |
+
value: 0.05524960028424231
|
111 |
+
name: Cosine Precision@5
|
112 |
+
- type: cosine_precision@10
|
113 |
+
value: 0.0320305560490318
|
114 |
+
name: Cosine Precision@10
|
115 |
+
- type: cosine_recall@1
|
116 |
+
value: 0.17498667614141056
|
117 |
+
name: Cosine Recall@1
|
118 |
+
- type: cosine_recall@3
|
119 |
+
value: 0.24835672410730147
|
120 |
+
name: Cosine Recall@3
|
121 |
+
- type: cosine_recall@5
|
122 |
+
value: 0.2762480014212116
|
123 |
+
name: Cosine Recall@5
|
124 |
+
- type: cosine_recall@10
|
125 |
+
value: 0.320305560490318
|
126 |
+
name: Cosine Recall@10
|
127 |
+
- type: cosine_ndcg@10
|
128 |
+
value: 0.24430049048684818
|
129 |
+
name: Cosine Ndcg@10
|
130 |
+
- type: cosine_ndcg@15
|
131 |
+
value: 0.2525347835304927
|
132 |
+
name: Cosine Ndcg@15
|
133 |
+
- type: cosine_ndcg@20
|
134 |
+
value: 0.2574496509992833
|
135 |
+
name: Cosine Ndcg@20
|
136 |
+
- type: cosine_mrr@10
|
137 |
+
value: 0.2204687601338871
|
138 |
+
name: Cosine Mrr@10
|
139 |
+
- type: cosine_map@100
|
140 |
+
value: 0.22764969395073778
|
141 |
+
name: Cosine Map@100
|
142 |
+
- task:
|
143 |
+
type: information-retrieval
|
144 |
+
name: Information Retrieval
|
145 |
+
dataset:
|
146 |
+
name: dim 512
|
147 |
+
type: dim_512
|
148 |
+
metrics:
|
149 |
+
- type: cosine_accuracy@1
|
150 |
+
value: 0.17161129863208385
|
151 |
+
name: Cosine Accuracy@1
|
152 |
+
- type: cosine_accuracy@3
|
153 |
+
value: 0.24018475750577367
|
154 |
+
name: Cosine Accuracy@3
|
155 |
+
- type: cosine_accuracy@5
|
156 |
+
value: 0.2719843666725884
|
157 |
+
name: Cosine Accuracy@5
|
158 |
+
- type: cosine_accuracy@10
|
159 |
+
value: 0.31621957718955407
|
160 |
+
name: Cosine Accuracy@10
|
161 |
+
- type: cosine_precision@1
|
162 |
+
value: 0.17161129863208385
|
163 |
+
name: Cosine Precision@1
|
164 |
+
- type: cosine_precision@3
|
165 |
+
value: 0.08006158583525788
|
166 |
+
name: Cosine Precision@3
|
167 |
+
- type: cosine_precision@5
|
168 |
+
value: 0.05439687333451768
|
169 |
+
name: Cosine Precision@5
|
170 |
+
- type: cosine_precision@10
|
171 |
+
value: 0.03162195771895541
|
172 |
+
name: Cosine Precision@10
|
173 |
+
- type: cosine_recall@1
|
174 |
+
value: 0.17161129863208385
|
175 |
+
name: Cosine Recall@1
|
176 |
+
- type: cosine_recall@3
|
177 |
+
value: 0.24018475750577367
|
178 |
+
name: Cosine Recall@3
|
179 |
+
- type: cosine_recall@5
|
180 |
+
value: 0.2719843666725884
|
181 |
+
name: Cosine Recall@5
|
182 |
+
- type: cosine_recall@10
|
183 |
+
value: 0.31621957718955407
|
184 |
+
name: Cosine Recall@10
|
185 |
+
- type: cosine_ndcg@10
|
186 |
+
value: 0.23947113373513576
|
187 |
+
name: Cosine Ndcg@10
|
188 |
+
- type: cosine_ndcg@15
|
189 |
+
value: 0.24636222462199156
|
190 |
+
name: Cosine Ndcg@15
|
191 |
+
- type: cosine_ndcg@20
|
192 |
+
value: 0.2517242130957284
|
193 |
+
name: Cosine Ndcg@20
|
194 |
+
- type: cosine_mrr@10
|
195 |
+
value: 0.2154852845384024
|
196 |
+
name: Cosine Mrr@10
|
197 |
+
- type: cosine_map@100
|
198 |
+
value: 0.2225725360678114
|
199 |
+
name: Cosine Map@100
|
200 |
+
- task:
|
201 |
+
type: information-retrieval
|
202 |
+
name: Information Retrieval
|
203 |
+
dataset:
|
204 |
+
name: dim 256
|
205 |
+
type: dim_256
|
206 |
+
metrics:
|
207 |
+
- type: cosine_accuracy@1
|
208 |
+
value: 0.16024160596908865
|
209 |
+
name: Cosine Accuracy@1
|
210 |
+
- type: cosine_accuracy@3
|
211 |
+
value: 0.22757150470776336
|
212 |
+
name: Cosine Accuracy@3
|
213 |
+
- type: cosine_accuracy@5
|
214 |
+
value: 0.2602593711138746
|
215 |
+
name: Cosine Accuracy@5
|
216 |
+
- type: cosine_accuracy@10
|
217 |
+
value: 0.3075146562444484
|
218 |
+
name: Cosine Accuracy@10
|
219 |
+
- type: cosine_precision@1
|
220 |
+
value: 0.16024160596908865
|
221 |
+
name: Cosine Precision@1
|
222 |
+
- type: cosine_precision@3
|
223 |
+
value: 0.07585716823592112
|
224 |
+
name: Cosine Precision@3
|
225 |
+
- type: cosine_precision@5
|
226 |
+
value: 0.052051874222774915
|
227 |
+
name: Cosine Precision@5
|
228 |
+
- type: cosine_precision@10
|
229 |
+
value: 0.030751465624444838
|
230 |
+
name: Cosine Precision@10
|
231 |
+
- type: cosine_recall@1
|
232 |
+
value: 0.16024160596908865
|
233 |
+
name: Cosine Recall@1
|
234 |
+
- type: cosine_recall@3
|
235 |
+
value: 0.22757150470776336
|
236 |
+
name: Cosine Recall@3
|
237 |
+
- type: cosine_recall@5
|
238 |
+
value: 0.2602593711138746
|
239 |
+
name: Cosine Recall@5
|
240 |
+
- type: cosine_recall@10
|
241 |
+
value: 0.3075146562444484
|
242 |
+
name: Cosine Recall@10
|
243 |
+
- type: cosine_ndcg@10
|
244 |
+
value: 0.22844579790475078
|
245 |
+
name: Cosine Ndcg@10
|
246 |
+
- type: cosine_ndcg@15
|
247 |
+
value: 0.2357050364715922
|
248 |
+
name: Cosine Ndcg@15
|
249 |
+
- type: cosine_ndcg@20
|
250 |
+
value: 0.24051535612507915
|
251 |
+
name: Cosine Ndcg@20
|
252 |
+
- type: cosine_mrr@10
|
253 |
+
value: 0.20381231547513284
|
254 |
+
name: Cosine Mrr@10
|
255 |
+
- type: cosine_map@100
|
256 |
+
value: 0.21077486383464478
|
257 |
+
name: Cosine Map@100
|
258 |
+
- task:
|
259 |
+
type: information-retrieval
|
260 |
+
name: Information Retrieval
|
261 |
+
dataset:
|
262 |
+
name: dim 128
|
263 |
+
type: dim_128
|
264 |
+
metrics:
|
265 |
+
- type: cosine_accuracy@1
|
266 |
+
value: 0.14372002131817374
|
267 |
+
name: Cosine Accuracy@1
|
268 |
+
- type: cosine_accuracy@3
|
269 |
+
value: 0.20465446793391368
|
270 |
+
name: Cosine Accuracy@3
|
271 |
+
- type: cosine_accuracy@5
|
272 |
+
value: 0.23307869959140168
|
273 |
+
name: Cosine Accuracy@5
|
274 |
+
- type: cosine_accuracy@10
|
275 |
+
value: 0.279445727482679
|
276 |
+
name: Cosine Accuracy@10
|
277 |
+
- type: cosine_precision@1
|
278 |
+
value: 0.14372002131817374
|
279 |
+
name: Cosine Precision@1
|
280 |
+
- type: cosine_precision@3
|
281 |
+
value: 0.06821815597797122
|
282 |
+
name: Cosine Precision@3
|
283 |
+
- type: cosine_precision@5
|
284 |
+
value: 0.04661573991828033
|
285 |
+
name: Cosine Precision@5
|
286 |
+
- type: cosine_precision@10
|
287 |
+
value: 0.0279445727482679
|
288 |
+
name: Cosine Precision@10
|
289 |
+
- type: cosine_recall@1
|
290 |
+
value: 0.14372002131817374
|
291 |
+
name: Cosine Recall@1
|
292 |
+
- type: cosine_recall@3
|
293 |
+
value: 0.20465446793391368
|
294 |
+
name: Cosine Recall@3
|
295 |
+
- type: cosine_recall@5
|
296 |
+
value: 0.23307869959140168
|
297 |
+
name: Cosine Recall@5
|
298 |
+
- type: cosine_recall@10
|
299 |
+
value: 0.279445727482679
|
300 |
+
name: Cosine Recall@10
|
301 |
+
- type: cosine_ndcg@10
|
302 |
+
value: 0.20572968417646773
|
303 |
+
name: Cosine Ndcg@10
|
304 |
+
- type: cosine_ndcg@15
|
305 |
+
value: 0.21411686675503838
|
306 |
+
name: Cosine Ndcg@15
|
307 |
+
- type: cosine_ndcg@20
|
308 |
+
value: 0.21935674398662894
|
309 |
+
name: Cosine Ndcg@20
|
310 |
+
- type: cosine_mrr@10
|
311 |
+
value: 0.1828928000406064
|
312 |
+
name: Cosine Mrr@10
|
313 |
+
- type: cosine_map@100
|
314 |
+
value: 0.19012440317942259
|
315 |
+
name: Cosine Map@100
|
316 |
+
- task:
|
317 |
+
type: information-retrieval
|
318 |
+
name: Information Retrieval
|
319 |
+
dataset:
|
320 |
+
name: dim 64
|
321 |
+
type: dim_64
|
322 |
+
metrics:
|
323 |
+
- type: cosine_accuracy@1
|
324 |
+
value: 0.11067685201634393
|
325 |
+
name: Cosine Accuracy@1
|
326 |
+
- type: cosine_accuracy@3
|
327 |
+
value: 0.15953100017765146
|
328 |
+
name: Cosine Accuracy@3
|
329 |
+
- type: cosine_accuracy@5
|
330 |
+
value: 0.18617871735654645
|
331 |
+
name: Cosine Accuracy@5
|
332 |
+
- type: cosine_accuracy@10
|
333 |
+
value: 0.22721620181204477
|
334 |
+
name: Cosine Accuracy@10
|
335 |
+
- type: cosine_precision@1
|
336 |
+
value: 0.11067685201634393
|
337 |
+
name: Cosine Precision@1
|
338 |
+
- type: cosine_precision@3
|
339 |
+
value: 0.05317700005921715
|
340 |
+
name: Cosine Precision@3
|
341 |
+
- type: cosine_precision@5
|
342 |
+
value: 0.03723574347130929
|
343 |
+
name: Cosine Precision@5
|
344 |
+
- type: cosine_precision@10
|
345 |
+
value: 0.022721620181204476
|
346 |
+
name: Cosine Precision@10
|
347 |
+
- type: cosine_recall@1
|
348 |
+
value: 0.11067685201634393
|
349 |
+
name: Cosine Recall@1
|
350 |
+
- type: cosine_recall@3
|
351 |
+
value: 0.15953100017765146
|
352 |
+
name: Cosine Recall@3
|
353 |
+
- type: cosine_recall@5
|
354 |
+
value: 0.18617871735654645
|
355 |
+
name: Cosine Recall@5
|
356 |
+
- type: cosine_recall@10
|
357 |
+
value: 0.22721620181204477
|
358 |
+
name: Cosine Recall@10
|
359 |
+
- type: cosine_ndcg@10
|
360 |
+
value: 0.16327341570689552
|
361 |
+
name: Cosine Ndcg@10
|
362 |
+
- type: cosine_ndcg@15
|
363 |
+
value: 0.1699977455983759
|
364 |
+
name: Cosine Ndcg@15
|
365 |
+
- type: cosine_ndcg@20
|
366 |
+
value: 0.17462327712912765
|
367 |
+
name: Cosine Ndcg@20
|
368 |
+
- type: cosine_mrr@10
|
369 |
+
value: 0.1435284115422685
|
370 |
+
name: Cosine Mrr@10
|
371 |
+
- type: cosine_map@100
|
372 |
+
value: 0.1500325081763102
|
373 |
+
name: Cosine Map@100
|
374 |
+
---
|
375 |
+
|
376 |
+
# modernbert-embed-base-bible
|
377 |
+
|
378 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
379 |
+
|
380 |
+
## Model Details
|
381 |
+
|
382 |
+
### Model Description
|
383 |
+
- **Model Type:** Sentence Transformer
|
384 |
+
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision bb0033c9f3def40c3c5b26ff0b53c74f3320d703 -->
|
385 |
+
- **Maximum Sequence Length:** 8192 tokens
|
386 |
+
- **Output Dimensionality:** 768 dimensions
|
387 |
+
- **Similarity Function:** Cosine Similarity
|
388 |
+
- **Training Dataset:**
|
389 |
+
- json
|
390 |
+
- **Language:** fr
|
391 |
+
- **License:** apache-2.0
|
392 |
+
|
393 |
+
### Model Sources
|
394 |
+
|
395 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
396 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
397 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
398 |
+
|
399 |
+
### Full Model Architecture
|
400 |
+
|
401 |
+
```
|
402 |
+
SentenceTransformer(
|
403 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
404 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
405 |
+
(2): Normalize()
|
406 |
+
)
|
407 |
+
```
|
408 |
+
|
409 |
+
## Usage
|
410 |
+
|
411 |
+
### Direct Usage (Sentence Transformers)
|
412 |
+
|
413 |
+
First install the Sentence Transformers library:
|
414 |
+
|
415 |
+
```bash
|
416 |
+
pip install -U sentence-transformers
|
417 |
+
```
|
418 |
+
|
419 |
+
Then you can load this model and run inference.
|
420 |
+
```python
|
421 |
+
from sentence_transformers import SentenceTransformer
|
422 |
+
|
423 |
+
# Download from the 🤗 Hub
|
424 |
+
model = SentenceTransformer("Steve77/modernbert-embed-base-bible")
|
425 |
+
# Run inference
|
426 |
+
sentences = [
|
427 |
+
"Quelles tâches les Lévites devaient-ils accomplir dans le service de la maison de l'Éternel?",
|
428 |
+
"Ils devaient prendre soin des parvis et des chambres, purifier toutes les choses saintes, s'occuper des pains de proposition, de la fleur de farine pour les offrandes, des galettes sans levain, des gâteaux cuits sur la plaque et des gâteaux frits, et de toutes les mesures de capacité et de longueur.",
|
429 |
+
"Les chefs des maisons paternelles, les chefs des tribus d'Israël, les chefs de milliers et de centaines, et les intendants du roi.",
|
430 |
+
]
|
431 |
+
embeddings = model.encode(sentences)
|
432 |
+
print(embeddings.shape)
|
433 |
+
# [3, 768]
|
434 |
+
|
435 |
+
# Get the similarity scores for the embeddings
|
436 |
+
similarities = model.similarity(embeddings, embeddings)
|
437 |
+
print(similarities.shape)
|
438 |
+
# [3, 3]
|
439 |
+
```
|
440 |
+
|
441 |
+
<!--
|
442 |
+
### Direct Usage (Transformers)
|
443 |
+
|
444 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
445 |
+
|
446 |
+
</details>
|
447 |
+
-->
|
448 |
+
|
449 |
+
<!--
|
450 |
+
### Downstream Usage (Sentence Transformers)
|
451 |
+
|
452 |
+
You can finetune this model on your own dataset.
|
453 |
+
|
454 |
+
<details><summary>Click to expand</summary>
|
455 |
+
|
456 |
+
</details>
|
457 |
+
-->
|
458 |
+
|
459 |
+
<!--
|
460 |
+
### Out-of-Scope Use
|
461 |
+
|
462 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
463 |
+
-->
|
464 |
+
|
465 |
+
## Evaluation
|
466 |
+
|
467 |
+
### Metrics
|
468 |
+
|
469 |
+
#### Information Retrieval
|
470 |
+
|
471 |
+
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
|
472 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
473 |
+
|
474 |
+
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|
475 |
+
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
|
476 |
+
| cosine_accuracy@1 | 0.175 | 0.1716 | 0.1602 | 0.1437 | 0.1107 |
|
477 |
+
| cosine_accuracy@3 | 0.2484 | 0.2402 | 0.2276 | 0.2047 | 0.1595 |
|
478 |
+
| cosine_accuracy@5 | 0.2762 | 0.272 | 0.2603 | 0.2331 | 0.1862 |
|
479 |
+
| cosine_accuracy@10 | 0.3203 | 0.3162 | 0.3075 | 0.2794 | 0.2272 |
|
480 |
+
| cosine_precision@1 | 0.175 | 0.1716 | 0.1602 | 0.1437 | 0.1107 |
|
481 |
+
| cosine_precision@3 | 0.0828 | 0.0801 | 0.0759 | 0.0682 | 0.0532 |
|
482 |
+
| cosine_precision@5 | 0.0552 | 0.0544 | 0.0521 | 0.0466 | 0.0372 |
|
483 |
+
| cosine_precision@10 | 0.032 | 0.0316 | 0.0308 | 0.0279 | 0.0227 |
|
484 |
+
| cosine_recall@1 | 0.175 | 0.1716 | 0.1602 | 0.1437 | 0.1107 |
|
485 |
+
| cosine_recall@3 | 0.2484 | 0.2402 | 0.2276 | 0.2047 | 0.1595 |
|
486 |
+
| cosine_recall@5 | 0.2762 | 0.272 | 0.2603 | 0.2331 | 0.1862 |
|
487 |
+
| cosine_recall@10 | 0.3203 | 0.3162 | 0.3075 | 0.2794 | 0.2272 |
|
488 |
+
| cosine_ndcg@10 | 0.2443 | 0.2395 | 0.2284 | 0.2057 | 0.1633 |
|
489 |
+
| cosine_ndcg@15 | 0.2525 | 0.2464 | 0.2357 | 0.2141 | 0.17 |
|
490 |
+
| **cosine_ndcg@20** | **0.2574** | **0.2517** | **0.2405** | **0.2194** | **0.1746** |
|
491 |
+
| cosine_mrr@10 | 0.2205 | 0.2155 | 0.2038 | 0.1829 | 0.1435 |
|
492 |
+
| cosine_map@100 | 0.2276 | 0.2226 | 0.2108 | 0.1901 | 0.15 |
|
493 |
+
|
494 |
+
<!--
|
495 |
+
## Bias, Risks and Limitations
|
496 |
+
|
497 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
498 |
+
-->
|
499 |
+
|
500 |
+
<!--
|
501 |
+
### Recommendations
|
502 |
+
|
503 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
504 |
+
-->
|
505 |
+
|
506 |
+
## Training Details
|
507 |
+
|
508 |
+
### Training Dataset
|
509 |
+
|
510 |
+
#### json
|
511 |
+
|
512 |
+
* Dataset: json
|
513 |
+
* Size: 47,560 training samples
|
514 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
515 |
+
* Approximate statistics based on the first 1000 samples:
|
516 |
+
| | anchor | positive |
|
517 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
518 |
+
| type | string | string |
|
519 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 21.11 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 24.84 tokens</li><li>max: 108 tokens</li></ul> |
|
520 |
+
* Samples:
|
521 |
+
| anchor | positive |
|
522 |
+
|:------------------------------------------------------|:----------------------------------------------------|
|
523 |
+
| <code>Quels sont les noms des fils de Schobal?</code> | <code>Aljan, Manahath, Ébal, Schephi et Onam</code> |
|
524 |
+
| <code>Quels sont les noms des fils de Tsibeon?</code> | <code>Ajja et Ana</code> |
|
525 |
+
| <code>Qui est le fils d'Ana?</code> | <code>Dischon</code> |
|
526 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
527 |
+
```json
|
528 |
+
{
|
529 |
+
"loss": "MultipleNegativesRankingLoss",
|
530 |
+
"matryoshka_dims": [
|
531 |
+
768,
|
532 |
+
512,
|
533 |
+
256,
|
534 |
+
128,
|
535 |
+
64
|
536 |
+
],
|
537 |
+
"matryoshka_weights": [
|
538 |
+
1,
|
539 |
+
1,
|
540 |
+
1,
|
541 |
+
1,
|
542 |
+
1
|
543 |
+
],
|
544 |
+
"n_dims_per_step": -1
|
545 |
+
}
|
546 |
+
```
|
547 |
+
|
548 |
+
### Training Hyperparameters
|
549 |
+
#### Non-Default Hyperparameters
|
550 |
+
|
551 |
+
- `eval_strategy`: epoch
|
552 |
+
- `per_device_train_batch_size`: 16
|
553 |
+
- `per_device_eval_batch_size`: 16
|
554 |
+
- `gradient_accumulation_steps`: 16
|
555 |
+
- `learning_rate`: 2e-05
|
556 |
+
- `num_train_epochs`: 4
|
557 |
+
- `lr_scheduler_type`: cosine
|
558 |
+
- `warmup_ratio`: 0.1
|
559 |
+
- `bf16`: True
|
560 |
+
- `load_best_model_at_end`: True
|
561 |
+
- `optim`: adamw_torch_fused
|
562 |
+
- `batch_sampler`: no_duplicates
|
563 |
+
|
564 |
+
#### All Hyperparameters
|
565 |
+
<details><summary>Click to expand</summary>
|
566 |
+
|
567 |
+
- `overwrite_output_dir`: False
|
568 |
+
- `do_predict`: False
|
569 |
+
- `eval_strategy`: epoch
|
570 |
+
- `prediction_loss_only`: True
|
571 |
+
- `per_device_train_batch_size`: 16
|
572 |
+
- `per_device_eval_batch_size`: 16
|
573 |
+
- `per_gpu_train_batch_size`: None
|
574 |
+
- `per_gpu_eval_batch_size`: None
|
575 |
+
- `gradient_accumulation_steps`: 16
|
576 |
+
- `eval_accumulation_steps`: None
|
577 |
+
- `torch_empty_cache_steps`: None
|
578 |
+
- `learning_rate`: 2e-05
|
579 |
+
- `weight_decay`: 0.0
|
580 |
+
- `adam_beta1`: 0.9
|
581 |
+
- `adam_beta2`: 0.999
|
582 |
+
- `adam_epsilon`: 1e-08
|
583 |
+
- `max_grad_norm`: 1.0
|
584 |
+
- `num_train_epochs`: 4
|
585 |
+
- `max_steps`: -1
|
586 |
+
- `lr_scheduler_type`: cosine
|
587 |
+
- `lr_scheduler_kwargs`: {}
|
588 |
+
- `warmup_ratio`: 0.1
|
589 |
+
- `warmup_steps`: 0
|
590 |
+
- `log_level`: passive
|
591 |
+
- `log_level_replica`: warning
|
592 |
+
- `log_on_each_node`: True
|
593 |
+
- `logging_nan_inf_filter`: True
|
594 |
+
- `save_safetensors`: True
|
595 |
+
- `save_on_each_node`: False
|
596 |
+
- `save_only_model`: False
|
597 |
+
- `restore_callback_states_from_checkpoint`: False
|
598 |
+
- `no_cuda`: False
|
599 |
+
- `use_cpu`: False
|
600 |
+
- `use_mps_device`: False
|
601 |
+
- `seed`: 42
|
602 |
+
- `data_seed`: None
|
603 |
+
- `jit_mode_eval`: False
|
604 |
+
- `use_ipex`: False
|
605 |
+
- `bf16`: True
|
606 |
+
- `fp16`: False
|
607 |
+
- `fp16_opt_level`: O1
|
608 |
+
- `half_precision_backend`: auto
|
609 |
+
- `bf16_full_eval`: False
|
610 |
+
- `fp16_full_eval`: False
|
611 |
+
- `tf32`: None
|
612 |
+
- `local_rank`: 0
|
613 |
+
- `ddp_backend`: None
|
614 |
+
- `tpu_num_cores`: None
|
615 |
+
- `tpu_metrics_debug`: False
|
616 |
+
- `debug`: []
|
617 |
+
- `dataloader_drop_last`: False
|
618 |
+
- `dataloader_num_workers`: 0
|
619 |
+
- `dataloader_prefetch_factor`: None
|
620 |
+
- `past_index`: -1
|
621 |
+
- `disable_tqdm`: False
|
622 |
+
- `remove_unused_columns`: True
|
623 |
+
- `label_names`: None
|
624 |
+
- `load_best_model_at_end`: True
|
625 |
+
- `ignore_data_skip`: False
|
626 |
+
- `fsdp`: []
|
627 |
+
- `fsdp_min_num_params`: 0
|
628 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
629 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
630 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
631 |
+
- `deepspeed`: None
|
632 |
+
- `label_smoothing_factor`: 0.0
|
633 |
+
- `optim`: adamw_torch_fused
|
634 |
+
- `optim_args`: None
|
635 |
+
- `adafactor`: False
|
636 |
+
- `group_by_length`: False
|
637 |
+
- `length_column_name`: length
|
638 |
+
- `ddp_find_unused_parameters`: None
|
639 |
+
- `ddp_bucket_cap_mb`: None
|
640 |
+
- `ddp_broadcast_buffers`: False
|
641 |
+
- `dataloader_pin_memory`: True
|
642 |
+
- `dataloader_persistent_workers`: False
|
643 |
+
- `skip_memory_metrics`: True
|
644 |
+
- `use_legacy_prediction_loop`: False
|
645 |
+
- `push_to_hub`: False
|
646 |
+
- `resume_from_checkpoint`: None
|
647 |
+
- `hub_model_id`: None
|
648 |
+
- `hub_strategy`: every_save
|
649 |
+
- `hub_private_repo`: None
|
650 |
+
- `hub_always_push`: False
|
651 |
+
- `gradient_checkpointing`: False
|
652 |
+
- `gradient_checkpointing_kwargs`: None
|
653 |
+
- `include_inputs_for_metrics`: False
|
654 |
+
- `include_for_metrics`: []
|
655 |
+
- `eval_do_concat_batches`: True
|
656 |
+
- `fp16_backend`: auto
|
657 |
+
- `push_to_hub_model_id`: None
|
658 |
+
- `push_to_hub_organization`: None
|
659 |
+
- `mp_parameters`:
|
660 |
+
- `auto_find_batch_size`: False
|
661 |
+
- `full_determinism`: False
|
662 |
+
- `torchdynamo`: None
|
663 |
+
- `ray_scope`: last
|
664 |
+
- `ddp_timeout`: 1800
|
665 |
+
- `torch_compile`: False
|
666 |
+
- `torch_compile_backend`: None
|
667 |
+
- `torch_compile_mode`: None
|
668 |
+
- `dispatch_batches`: None
|
669 |
+
- `split_batches`: None
|
670 |
+
- `include_tokens_per_second`: False
|
671 |
+
- `include_num_input_tokens_seen`: False
|
672 |
+
- `neftune_noise_alpha`: None
|
673 |
+
- `optim_target_modules`: None
|
674 |
+
- `batch_eval_metrics`: False
|
675 |
+
- `eval_on_start`: False
|
676 |
+
- `use_liger_kernel`: False
|
677 |
+
- `eval_use_gather_object`: False
|
678 |
+
- `average_tokens_across_devices`: False
|
679 |
+
- `prompts`: None
|
680 |
+
- `batch_sampler`: no_duplicates
|
681 |
+
- `multi_dataset_batch_sampler`: proportional
|
682 |
+
|
683 |
+
</details>
|
684 |
+
|
685 |
+
### Training Logs
|
686 |
+
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@20 | dim_512_cosine_ndcg@20 | dim_256_cosine_ndcg@20 | dim_128_cosine_ndcg@20 | dim_64_cosine_ndcg@20 |
|
687 |
+
|:----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
|
688 |
+
| 0.0538 | 10 | 12.274 | - | - | - | - | - |
|
689 |
+
| 0.1076 | 20 | 11.5084 | - | - | - | - | - |
|
690 |
+
| 0.1615 | 30 | 10.5276 | - | - | - | - | - |
|
691 |
+
| 0.2153 | 40 | 9.0432 | - | - | - | - | - |
|
692 |
+
| 0.2691 | 50 | 7.572 | - | - | - | - | - |
|
693 |
+
| 0.3229 | 60 | 7.7696 | - | - | - | - | - |
|
694 |
+
| 0.3767 | 70 | 6.5673 | - | - | - | - | - |
|
695 |
+
| 0.4305 | 80 | 6.6586 | - | - | - | - | - |
|
696 |
+
| 0.4844 | 90 | 5.5276 | - | - | - | - | - |
|
697 |
+
| 0.5382 | 100 | 5.9891 | - | - | - | - | - |
|
698 |
+
| 0.5920 | 110 | 5.2983 | - | - | - | - | - |
|
699 |
+
| 0.6458 | 120 | 5.6242 | - | - | - | - | - |
|
700 |
+
| 0.6996 | 130 | 5.498 | - | - | - | - | - |
|
701 |
+
| 0.7534 | 140 | 4.4201 | - | - | - | - | - |
|
702 |
+
| 0.8073 | 150 | 4.3818 | - | - | - | - | - |
|
703 |
+
| 0.8611 | 160 | 4.2175 | - | - | - | - | - |
|
704 |
+
| 0.9149 | 170 | 4.2341 | - | - | - | - | - |
|
705 |
+
| 0.9687 | 180 | 4.3349 | - | - | - | - | - |
|
706 |
+
| 0.9956 | 185 | - | 0.2664 | 0.2607 | 0.2508 | 0.2263 | 0.1796 |
|
707 |
+
| 1.0269 | 190 | 4.6803 | - | - | - | - | - |
|
708 |
+
| 1.0807 | 200 | 3.877 | - | - | - | - | - |
|
709 |
+
| 1.1345 | 210 | 4.0309 | - | - | - | - | - |
|
710 |
+
| 1.1884 | 220 | 4.0755 | - | - | - | - | - |
|
711 |
+
| 1.2422 | 230 | 3.9068 | - | - | - | - | - |
|
712 |
+
| 1.2960 | 240 | 4.188 | - | - | - | - | - |
|
713 |
+
| 1.3498 | 250 | 4.3417 | - | - | - | - | - |
|
714 |
+
| 1.4036 | 260 | 4.0526 | - | - | - | - | - |
|
715 |
+
| 1.4575 | 270 | 3.3933 | - | - | - | - | - |
|
716 |
+
| 1.5113 | 280 | 3.8309 | - | - | - | - | - |
|
717 |
+
| 1.5651 | 290 | 3.5633 | - | - | - | - | - |
|
718 |
+
| 1.6189 | 300 | 3.8179 | - | - | - | - | - |
|
719 |
+
| 1.6727 | 310 | 4.0671 | - | - | - | - | - |
|
720 |
+
| 1.7265 | 320 | 3.3919 | - | - | - | - | - |
|
721 |
+
| 1.7804 | 330 | 2.6578 | - | - | - | - | - |
|
722 |
+
| 1.8342 | 340 | 2.6953 | - | - | - | - | - |
|
723 |
+
| 1.8880 | 350 | 2.8858 | - | - | - | - | - |
|
724 |
+
| 1.9418 | 360 | 2.8933 | - | - | - | - | - |
|
725 |
+
| **1.9956** | **370** | **2.9603** | **0.2775** | **0.2737** | **0.2637** | **0.2402** | **0.1916** |
|
726 |
+
| 2.0538 | 380 | 3.3361 | - | - | - | - | - |
|
727 |
+
| 2.1076 | 390 | 2.7904 | - | - | - | - | - |
|
728 |
+
| 2.1615 | 400 | 3.0108 | - | - | - | - | - |
|
729 |
+
| 2.2153 | 410 | 2.8917 | - | - | - | - | - |
|
730 |
+
| 2.2691 | 420 | 3.0295 | - | - | - | - | - |
|
731 |
+
| 2.3229 | 430 | 3.5609 | - | - | - | - | - |
|
732 |
+
| 2.3767 | 440 | 2.7722 | - | - | - | - | - |
|
733 |
+
| 2.4305 | 450 | 3.2115 | - | - | - | - | - |
|
734 |
+
| 2.4844 | 460 | 2.6333 | - | - | - | - | - |
|
735 |
+
| 2.5382 | 470 | 3.2503 | - | - | - | - | - |
|
736 |
+
| 2.5920 | 480 | 2.7708 | - | - | - | - | - |
|
737 |
+
| 2.6458 | 490 | 3.167 | - | - | - | - | - |
|
738 |
+
| 2.6996 | 500 | 3.1447 | - | - | - | - | - |
|
739 |
+
| 2.7534 | 510 | 2.0428 | - | - | - | - | - |
|
740 |
+
| 2.8073 | 520 | 2.0001 | - | - | - | - | - |
|
741 |
+
| 2.8611 | 530 | 2.0826 | - | - | - | - | - |
|
742 |
+
| 2.9149 | 540 | 2.0853 | - | - | - | - | - |
|
743 |
+
| 2.9687 | 550 | 2.2365 | - | - | - | - | - |
|
744 |
+
| 2.9956 | 555 | - | 0.2660 | 0.2604 | 0.2509 | 0.2266 | 0.1810 |
|
745 |
+
| 3.0269 | 560 | 2.762 | - | - | - | - | - |
|
746 |
+
| 3.0807 | 570 | 2.1219 | - | - | - | - | - |
|
747 |
+
| 3.1345 | 580 | 2.2908 | - | - | - | - | - |
|
748 |
+
| 3.1884 | 590 | 2.6195 | - | - | - | - | - |
|
749 |
+
| 3.2422 | 600 | 2.3468 | - | - | - | - | - |
|
750 |
+
| 3.2960 | 610 | 2.7504 | - | - | - | - | - |
|
751 |
+
| 3.3498 | 620 | 2.9486 | - | - | - | - | - |
|
752 |
+
| 3.4036 | 630 | 2.7281 | - | - | - | - | - |
|
753 |
+
| 3.4575 | 640 | 2.188 | - | - | - | - | - |
|
754 |
+
| 3.5113 | 650 | 2.5494 | - | - | - | - | - |
|
755 |
+
| 3.5651 | 660 | 2.426 | - | - | - | - | - |
|
756 |
+
| 3.6189 | 670 | 2.6478 | - | - | - | - | - |
|
757 |
+
| 3.6727 | 680 | 2.9209 | - | - | - | - | - |
|
758 |
+
| 3.7265 | 690 | 2.3512 | - | - | - | - | - |
|
759 |
+
| 3.7804 | 700 | 1.6746 | - | - | - | - | - |
|
760 |
+
| 3.8342 | 710 | 1.739 | - | - | - | - | - |
|
761 |
+
| 3.8880 | 720 | 1.951 | - | - | - | - | - |
|
762 |
+
| 3.9418 | 730 | 1.9886 | - | - | - | - | - |
|
763 |
+
| 3.9956 | 740 | 2.1022 | 0.2574 | 0.2517 | 0.2405 | 0.2194 | 0.1746 |
|
764 |
+
|
765 |
+
* The bold row denotes the saved checkpoint.
|
766 |
+
|
767 |
+
### Environmental Impact
|
768 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
769 |
+
- **Energy Consumed**: 0.205 kWh
|
770 |
+
- **Carbon Emitted**: 0.011 kg of CO2
|
771 |
+
- **Hours Used**: 6.806 hours
|
772 |
+
|
773 |
+
### Training Hardware
|
774 |
+
- **On Cloud**: No
|
775 |
+
- **GPU Model**: 1 x NVIDIA GeForce GTX 1660 Ti
|
776 |
+
- **CPU Model**: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
|
777 |
+
- **RAM Size**: 7.68 GB
|
778 |
+
|
779 |
+
### Framework Versions
|
780 |
+
- Python: 3.11.11
|
781 |
+
- Sentence Transformers: 3.3.1
|
782 |
+
- Transformers: 4.48.0.dev0
|
783 |
+
- PyTorch: 2.5.1
|
784 |
+
- Accelerate: 1.2.1
|
785 |
+
- Datasets: 2.19.1
|
786 |
+
- Tokenizers: 0.21.0
|
787 |
+
|
788 |
+
## Citation
|
789 |
+
|
790 |
+
### BibTeX
|
791 |
+
|
792 |
+
#### Sentence Transformers
|
793 |
+
```bibtex
|
794 |
+
@inproceedings{reimers-2019-sentence-bert,
|
795 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
796 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
797 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
798 |
+
month = "11",
|
799 |
+
year = "2019",
|
800 |
+
publisher = "Association for Computational Linguistics",
|
801 |
+
url = "https://arxiv.org/abs/1908.10084",
|
802 |
+
}
|
803 |
+
```
|
804 |
+
|
805 |
+
#### MatryoshkaLoss
|
806 |
+
```bibtex
|
807 |
+
@misc{kusupati2024matryoshka,
|
808 |
+
title={Matryoshka Representation Learning},
|
809 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
810 |
+
year={2024},
|
811 |
+
eprint={2205.13147},
|
812 |
+
archivePrefix={arXiv},
|
813 |
+
primaryClass={cs.LG}
|
814 |
+
}
|
815 |
+
```
|
816 |
+
|
817 |
+
#### MultipleNegativesRankingLoss
|
818 |
+
```bibtex
|
819 |
+
@misc{henderson2017efficient,
|
820 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
821 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
822 |
+
year={2017},
|
823 |
+
eprint={1705.00652},
|
824 |
+
archivePrefix={arXiv},
|
825 |
+
primaryClass={cs.CL}
|
826 |
+
}
|
827 |
+
```
|
828 |
+
|
829 |
+
<!--
|
830 |
+
## Glossary
|
831 |
+
|
832 |
+
*Clearly define terms in order to be accessible across audiences.*
|
833 |
+
-->
|
834 |
+
|
835 |
+
<!--
|
836 |
+
## Model Card Authors
|
837 |
+
|
838 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
839 |
+
-->
|
840 |
+
|
841 |
+
<!--
|
842 |
+
## Model Card Contact
|
843 |
+
|
844 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
845 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nomic-ai/modernbert-embed-base",
|
3 |
+
"architectures": [
|
4 |
+
"ModernBertModel"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 50281,
|
9 |
+
"classifier_activation": "gelu",
|
10 |
+
"classifier_bias": false,
|
11 |
+
"classifier_dropout": 0.0,
|
12 |
+
"classifier_pooling": "mean",
|
13 |
+
"cls_token_id": 50281,
|
14 |
+
"decoder_bias": true,
|
15 |
+
"deterministic_flash_attn": false,
|
16 |
+
"embedding_dropout": 0.0,
|
17 |
+
"eos_token_id": 50282,
|
18 |
+
"global_attn_every_n_layers": 3,
|
19 |
+
"global_rope_theta": 160000.0,
|
20 |
+
"gradient_checkpointing": false,
|
21 |
+
"hidden_activation": "gelu",
|
22 |
+
"hidden_size": 768,
|
23 |
+
"initializer_cutoff_factor": 2.0,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"intermediate_size": 1152,
|
26 |
+
"layer_norm_eps": 1e-05,
|
27 |
+
"local_attention": 128,
|
28 |
+
"local_rope_theta": 10000.0,
|
29 |
+
"max_position_embeddings": 8192,
|
30 |
+
"mlp_bias": false,
|
31 |
+
"mlp_dropout": 0.0,
|
32 |
+
"model_type": "modernbert",
|
33 |
+
"norm_bias": false,
|
34 |
+
"norm_eps": 1e-05,
|
35 |
+
"num_attention_heads": 12,
|
36 |
+
"num_hidden_layers": 22,
|
37 |
+
"pad_token_id": 50283,
|
38 |
+
"position_embedding_type": "absolute",
|
39 |
+
"reference_compile": true,
|
40 |
+
"sep_token_id": 50282,
|
41 |
+
"sparse_pred_ignore_index": -100,
|
42 |
+
"sparse_prediction": false,
|
43 |
+
"torch_dtype": "float32",
|
44 |
+
"transformers_version": "4.48.0.dev0",
|
45 |
+
"vocab_size": 50368
|
46 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.48.0.dev0",
|
5 |
+
"pytorch": "2.5.1"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e039d5ff2db6b4b3f9ad910e8a114e383c580a64c6b30cf3797ce7f7c046b0d9
|
3 |
+
size 596070136
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": true,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,945 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "|||IP_ADDRESS|||",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": true,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": false
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<|padding|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"50254": {
|
20 |
+
"content": " ",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": true,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": false
|
26 |
+
},
|
27 |
+
"50255": {
|
28 |
+
"content": " ",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": false
|
34 |
+
},
|
35 |
+
"50256": {
|
36 |
+
"content": " ",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": true,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": false
|
42 |
+
},
|
43 |
+
"50257": {
|
44 |
+
"content": " ",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": true,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": false
|
50 |
+
},
|
51 |
+
"50258": {
|
52 |
+
"content": " ",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": true,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": false
|
58 |
+
},
|
59 |
+
"50259": {
|
60 |
+
"content": " ",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": true,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": false
|
66 |
+
},
|
67 |
+
"50260": {
|
68 |
+
"content": " ",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": true,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": false
|
74 |
+
},
|
75 |
+
"50261": {
|
76 |
+
"content": " ",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": true,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": false
|
82 |
+
},
|
83 |
+
"50262": {
|
84 |
+
"content": " ",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": true,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": false
|
90 |
+
},
|
91 |
+
"50263": {
|
92 |
+
"content": " ",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": true,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": false
|
98 |
+
},
|
99 |
+
"50264": {
|
100 |
+
"content": " ",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": true,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": false
|
106 |
+
},
|
107 |
+
"50265": {
|
108 |
+
"content": " ",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": true,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": false
|
114 |
+
},
|
115 |
+
"50266": {
|
116 |
+
"content": " ",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": true,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": false
|
122 |
+
},
|
123 |
+
"50267": {
|
124 |
+
"content": " ",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": true,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": false
|
130 |
+
},
|
131 |
+
"50268": {
|
132 |
+
"content": " ",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": true,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": false
|
138 |
+
},
|
139 |
+
"50269": {
|
140 |
+
"content": " ",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": true,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": false
|
146 |
+
},
|
147 |
+
"50270": {
|
148 |
+
"content": " ",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": true,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": false
|
154 |
+
},
|
155 |
+
"50271": {
|
156 |
+
"content": " ",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": true,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": false
|
162 |
+
},
|
163 |
+
"50272": {
|
164 |
+
"content": " ",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": true,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": false
|
170 |
+
},
|
171 |
+
"50273": {
|
172 |
+
"content": " ",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": true,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": false
|
178 |
+
},
|
179 |
+
"50274": {
|
180 |
+
"content": " ",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": true,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": false
|
186 |
+
},
|
187 |
+
"50275": {
|
188 |
+
"content": " ",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": true,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": false
|
194 |
+
},
|
195 |
+
"50276": {
|
196 |
+
"content": " ",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": true,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": false
|
202 |
+
},
|
203 |
+
"50277": {
|
204 |
+
"content": "|||EMAIL_ADDRESS|||",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": true,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": false
|
210 |
+
},
|
211 |
+
"50278": {
|
212 |
+
"content": "|||PHONE_NUMBER|||",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": true,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": false
|
218 |
+
},
|
219 |
+
"50279": {
|
220 |
+
"content": "<|endoftext|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"50280": {
|
228 |
+
"content": "[UNK]",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"50281": {
|
236 |
+
"content": "[CLS]",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"50282": {
|
244 |
+
"content": "[SEP]",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"50283": {
|
252 |
+
"content": "[PAD]",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"50284": {
|
260 |
+
"content": "[MASK]",
|
261 |
+
"lstrip": true,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"50285": {
|
268 |
+
"content": "[unused0]",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": true,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": false
|
274 |
+
},
|
275 |
+
"50286": {
|
276 |
+
"content": "[unused1]",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": true,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": false
|
282 |
+
},
|
283 |
+
"50287": {
|
284 |
+
"content": "[unused2]",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": true,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": false
|
290 |
+
},
|
291 |
+
"50288": {
|
292 |
+
"content": "[unused3]",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": true,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": false
|
298 |
+
},
|
299 |
+
"50289": {
|
300 |
+
"content": "[unused4]",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": true,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": false
|
306 |
+
},
|
307 |
+
"50290": {
|
308 |
+
"content": "[unused5]",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": true,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": false
|
314 |
+
},
|
315 |
+
"50291": {
|
316 |
+
"content": "[unused6]",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": true,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": false
|
322 |
+
},
|
323 |
+
"50292": {
|
324 |
+
"content": "[unused7]",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": true,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": false
|
330 |
+
},
|
331 |
+
"50293": {
|
332 |
+
"content": "[unused8]",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": true,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": false
|
338 |
+
},
|
339 |
+
"50294": {
|
340 |
+
"content": "[unused9]",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": true,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": false
|
346 |
+
},
|
347 |
+
"50295": {
|
348 |
+
"content": "[unused10]",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": true,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": false
|
354 |
+
},
|
355 |
+
"50296": {
|
356 |
+
"content": "[unused11]",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": true,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": false
|
362 |
+
},
|
363 |
+
"50297": {
|
364 |
+
"content": "[unused12]",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": true,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": false
|
370 |
+
},
|
371 |
+
"50298": {
|
372 |
+
"content": "[unused13]",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": true,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": false
|
378 |
+
},
|
379 |
+
"50299": {
|
380 |
+
"content": "[unused14]",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": true,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": false
|
386 |
+
},
|
387 |
+
"50300": {
|
388 |
+
"content": "[unused15]",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": true,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": false
|
394 |
+
},
|
395 |
+
"50301": {
|
396 |
+
"content": "[unused16]",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": true,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": false
|
402 |
+
},
|
403 |
+
"50302": {
|
404 |
+
"content": "[unused17]",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": true,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": false
|
410 |
+
},
|
411 |
+
"50303": {
|
412 |
+
"content": "[unused18]",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": true,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": false
|
418 |
+
},
|
419 |
+
"50304": {
|
420 |
+
"content": "[unused19]",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": true,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": false
|
426 |
+
},
|
427 |
+
"50305": {
|
428 |
+
"content": "[unused20]",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": true,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": false
|
434 |
+
},
|
435 |
+
"50306": {
|
436 |
+
"content": "[unused21]",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": true,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": false
|
442 |
+
},
|
443 |
+
"50307": {
|
444 |
+
"content": "[unused22]",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": true,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": false
|
450 |
+
},
|
451 |
+
"50308": {
|
452 |
+
"content": "[unused23]",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": true,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": false
|
458 |
+
},
|
459 |
+
"50309": {
|
460 |
+
"content": "[unused24]",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": true,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": false
|
466 |
+
},
|
467 |
+
"50310": {
|
468 |
+
"content": "[unused25]",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": true,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": false
|
474 |
+
},
|
475 |
+
"50311": {
|
476 |
+
"content": "[unused26]",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": true,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": false
|
482 |
+
},
|
483 |
+
"50312": {
|
484 |
+
"content": "[unused27]",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": true,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": false
|
490 |
+
},
|
491 |
+
"50313": {
|
492 |
+
"content": "[unused28]",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": true,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": false
|
498 |
+
},
|
499 |
+
"50314": {
|
500 |
+
"content": "[unused29]",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": true,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": false
|
506 |
+
},
|
507 |
+
"50315": {
|
508 |
+
"content": "[unused30]",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": true,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": false
|
514 |
+
},
|
515 |
+
"50316": {
|
516 |
+
"content": "[unused31]",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": true,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": false
|
522 |
+
},
|
523 |
+
"50317": {
|
524 |
+
"content": "[unused32]",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": true,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": false
|
530 |
+
},
|
531 |
+
"50318": {
|
532 |
+
"content": "[unused33]",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": true,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": false
|
538 |
+
},
|
539 |
+
"50319": {
|
540 |
+
"content": "[unused34]",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": true,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": false
|
546 |
+
},
|
547 |
+
"50320": {
|
548 |
+
"content": "[unused35]",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": true,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": false
|
554 |
+
},
|
555 |
+
"50321": {
|
556 |
+
"content": "[unused36]",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": true,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": false
|
562 |
+
},
|
563 |
+
"50322": {
|
564 |
+
"content": "[unused37]",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": true,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": false
|
570 |
+
},
|
571 |
+
"50323": {
|
572 |
+
"content": "[unused38]",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": true,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": false
|
578 |
+
},
|
579 |
+
"50324": {
|
580 |
+
"content": "[unused39]",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": true,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": false
|
586 |
+
},
|
587 |
+
"50325": {
|
588 |
+
"content": "[unused40]",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": true,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": false
|
594 |
+
},
|
595 |
+
"50326": {
|
596 |
+
"content": "[unused41]",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": true,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": false
|
602 |
+
},
|
603 |
+
"50327": {
|
604 |
+
"content": "[unused42]",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": true,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": false
|
610 |
+
},
|
611 |
+
"50328": {
|
612 |
+
"content": "[unused43]",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": true,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": false
|
618 |
+
},
|
619 |
+
"50329": {
|
620 |
+
"content": "[unused44]",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": true,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": false
|
626 |
+
},
|
627 |
+
"50330": {
|
628 |
+
"content": "[unused45]",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": true,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": false
|
634 |
+
},
|
635 |
+
"50331": {
|
636 |
+
"content": "[unused46]",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": true,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": false
|
642 |
+
},
|
643 |
+
"50332": {
|
644 |
+
"content": "[unused47]",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": true,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": false
|
650 |
+
},
|
651 |
+
"50333": {
|
652 |
+
"content": "[unused48]",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": true,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": false
|
658 |
+
},
|
659 |
+
"50334": {
|
660 |
+
"content": "[unused49]",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": true,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": false
|
666 |
+
},
|
667 |
+
"50335": {
|
668 |
+
"content": "[unused50]",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": true,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": false
|
674 |
+
},
|
675 |
+
"50336": {
|
676 |
+
"content": "[unused51]",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": true,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": false
|
682 |
+
},
|
683 |
+
"50337": {
|
684 |
+
"content": "[unused52]",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": true,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": false
|
690 |
+
},
|
691 |
+
"50338": {
|
692 |
+
"content": "[unused53]",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": true,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": false
|
698 |
+
},
|
699 |
+
"50339": {
|
700 |
+
"content": "[unused54]",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": true,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": false
|
706 |
+
},
|
707 |
+
"50340": {
|
708 |
+
"content": "[unused55]",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": true,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": false
|
714 |
+
},
|
715 |
+
"50341": {
|
716 |
+
"content": "[unused56]",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": true,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": false
|
722 |
+
},
|
723 |
+
"50342": {
|
724 |
+
"content": "[unused57]",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": true,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": false
|
730 |
+
},
|
731 |
+
"50343": {
|
732 |
+
"content": "[unused58]",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": true,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": false
|
738 |
+
},
|
739 |
+
"50344": {
|
740 |
+
"content": "[unused59]",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": true,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": false
|
746 |
+
},
|
747 |
+
"50345": {
|
748 |
+
"content": "[unused60]",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": true,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": false
|
754 |
+
},
|
755 |
+
"50346": {
|
756 |
+
"content": "[unused61]",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": true,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": false
|
762 |
+
},
|
763 |
+
"50347": {
|
764 |
+
"content": "[unused62]",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": true,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": false
|
770 |
+
},
|
771 |
+
"50348": {
|
772 |
+
"content": "[unused63]",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": true,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": false
|
778 |
+
},
|
779 |
+
"50349": {
|
780 |
+
"content": "[unused64]",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": true,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": false
|
786 |
+
},
|
787 |
+
"50350": {
|
788 |
+
"content": "[unused65]",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": true,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": false
|
794 |
+
},
|
795 |
+
"50351": {
|
796 |
+
"content": "[unused66]",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": true,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": false
|
802 |
+
},
|
803 |
+
"50352": {
|
804 |
+
"content": "[unused67]",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": true,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": false
|
810 |
+
},
|
811 |
+
"50353": {
|
812 |
+
"content": "[unused68]",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": true,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": false
|
818 |
+
},
|
819 |
+
"50354": {
|
820 |
+
"content": "[unused69]",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": true,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": false
|
826 |
+
},
|
827 |
+
"50355": {
|
828 |
+
"content": "[unused70]",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": true,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": false
|
834 |
+
},
|
835 |
+
"50356": {
|
836 |
+
"content": "[unused71]",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": true,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": false
|
842 |
+
},
|
843 |
+
"50357": {
|
844 |
+
"content": "[unused72]",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": true,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": false
|
850 |
+
},
|
851 |
+
"50358": {
|
852 |
+
"content": "[unused73]",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": true,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": false
|
858 |
+
},
|
859 |
+
"50359": {
|
860 |
+
"content": "[unused74]",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": true,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": false
|
866 |
+
},
|
867 |
+
"50360": {
|
868 |
+
"content": "[unused75]",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": true,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": false
|
874 |
+
},
|
875 |
+
"50361": {
|
876 |
+
"content": "[unused76]",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": true,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": false
|
882 |
+
},
|
883 |
+
"50362": {
|
884 |
+
"content": "[unused77]",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": true,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": false
|
890 |
+
},
|
891 |
+
"50363": {
|
892 |
+
"content": "[unused78]",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": true,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": false
|
898 |
+
},
|
899 |
+
"50364": {
|
900 |
+
"content": "[unused79]",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": true,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": false
|
906 |
+
},
|
907 |
+
"50365": {
|
908 |
+
"content": "[unused80]",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": true,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": false
|
914 |
+
},
|
915 |
+
"50366": {
|
916 |
+
"content": "[unused81]",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": true,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": false
|
922 |
+
},
|
923 |
+
"50367": {
|
924 |
+
"content": "[unused82]",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": true,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": false
|
930 |
+
}
|
931 |
+
},
|
932 |
+
"clean_up_tokenization_spaces": true,
|
933 |
+
"cls_token": "[CLS]",
|
934 |
+
"extra_special_tokens": {},
|
935 |
+
"mask_token": "[MASK]",
|
936 |
+
"model_input_names": [
|
937 |
+
"input_ids",
|
938 |
+
"attention_mask"
|
939 |
+
],
|
940 |
+
"model_max_length": 8192,
|
941 |
+
"pad_token": "[PAD]",
|
942 |
+
"sep_token": "[SEP]",
|
943 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
944 |
+
"unk_token": "[UNK]"
|
945 |
+
}
|