StevenLimcorn
commited on
Commit
•
638a504
1
Parent(s):
7008c31
Update README.md
Browse files
README.md
CHANGED
@@ -4,14 +4,14 @@ tags:
|
|
4 |
- roberta
|
5 |
license: mit
|
6 |
datasets:
|
7 |
-
-
|
8 |
widget:
|
9 |
- text: "Amir Sjarifoeddin Harahap lahir di Kota Medan, Sumatera Utara, 27 April 1907. Ia meninggal di Surakarta, Jawa Tengah, pada 19 Desember 1948 dalam usia 41 tahun. </s></s> Amir Sjarifoeddin Harahap masih hidup."
|
10 |
---
|
11 |
|
12 |
-
##
|
13 |
|
14 |
-
|
15 |
|
16 |
### Result
|
17 |
| Dataset | Accuracy | F1 | Precision | Recall |
|
@@ -37,7 +37,7 @@ The model was trained on with 5 epochs, batch size 16, learning rate 2e-5 and we
|
|
37 |
from transformers import pipeline
|
38 |
pretrained_name = "StevenLimcorn/indonesian-roberta-indonli"
|
39 |
nlp = pipeline(
|
40 |
-
"
|
41 |
model=pretrained_name,
|
42 |
tokenizer=pretrained_name
|
43 |
)
|
|
|
4 |
- roberta
|
5 |
license: mit
|
6 |
datasets:
|
7 |
+
- indonli
|
8 |
widget:
|
9 |
- text: "Amir Sjarifoeddin Harahap lahir di Kota Medan, Sumatera Utara, 27 April 1907. Ia meninggal di Surakarta, Jawa Tengah, pada 19 Desember 1948 dalam usia 41 tahun. </s></s> Amir Sjarifoeddin Harahap masih hidup."
|
10 |
---
|
11 |
|
12 |
+
## Indo-roberta-indonli
|
13 |
|
14 |
+
Indo-roberta-indonli is natural language inference classifier based on [Indo-roberta](https://huggingface.co/flax-community/indonesian-roberta-base) model. It was trained on the trained on [IndoNLI](https://github.com/ir-nlp-csui/indonli/tree/main/data/indonli) dataset. The model used was [Indo-roberta](https://huggingface.co/flax-community/indonesian-roberta-base) and was transfer-learned to a natural inference classifier model. The model are tested using the validation, test_layer and test_expert dataset given in the github repository. The results are shown below.
|
15 |
|
16 |
### Result
|
17 |
| Dataset | Accuracy | F1 | Precision | Recall |
|
|
|
37 |
from transformers import pipeline
|
38 |
pretrained_name = "StevenLimcorn/indonesian-roberta-indonli"
|
39 |
nlp = pipeline(
|
40 |
+
"zero-shot-classification",
|
41 |
model=pretrained_name,
|
42 |
tokenizer=pretrained_name
|
43 |
)
|