ppo-LunarLander-v2 / config.json
StevenPerrin's picture
Upload PPO LunarLander-v2 trained agent
e028ed8
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79b1748c8e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79b1748c8ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79b1748c8f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79b1748c9000>", "_build": "<function ActorCriticPolicy._build at 0x79b1748c9090>", "forward": "<function ActorCriticPolicy.forward at 0x79b1748c9120>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79b1748c91b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79b1748c9240>", "_predict": "<function ActorCriticPolicy._predict at 0x79b1748c92d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79b1748c9360>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79b1748c93f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79b1748c9480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79b174a5f9c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699195763696269674, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACYK8D3wdKM+80vfvfbgkr4y2KI8ai7KPQAAAAAAAAAAJp7fvYwCoD+iCKu+xsgFvxJeLL6nrr69AAAAAAAAAAANzZY9KUhButkYLjgXRiAzFueWOj69TLcAAIA/AACAPzP0xDy3GK0/aiClPXC24r6Jh5U7s+kUPQAAAAAAAAAAzYQevFwrR7qrzV6yHCnyLgGzHzqi5BMzAACAPwAAgD9meaW8BRxUPjEICT3aDyS+0EpjPDZHEz0AAAAAAAAAADMvVDzDxSq6CNrZt/85AbP/WnM7tdwANwAAgD8AAIA/zbIDPVcuYzzgkfq9fUwzvgQ/u7ziucS6AAAAAAAAAACahPs938p3P+/zQj4BU86+Pp7aPXiLpLwAAAAAAAAAAAY6cL5pL1s/D68bvp2dzL5TGIG+Mm8LvAAAAAAAAAAAzSQGvTZJHD3mrOw9Pngpvp8SsDuepqA8AAAAAAAAAACz8Vc9w7lsul6uxbkDAcW17grGubj65zgAAIA/AACAP5q1oD1RpW8/WuBdvCKWp75487c9MCXYvQAAAAAAAAAA89q6Pa3bLj9K1Ow8lCOBvlH+MD1cdSm8AAAAAAAAAADNJJy71PckPqtFpT3S5jS+Iy7PPHMz9boAAAAAAAAAAA198L3pij09ez/2Pf4GQL4aBfo77WFpPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHH3YL9deKMAWyUTS4BjAF0lEdAsXSh1GLDRHV9lChoBkdAcpEaJyhi9mgHTW0BaAhHQLF0oh24d6t1fZQoaAZHQG/wGozeoDRoB00MAWgIR0CxdM9tIkJKdX2UKGgGR0BytudxyXD4aAdNBAFoCEdAsXTpr8BMjHV9lChoBkdAbI2QCjk+5mgHTRoBaAhHQLF08iRW9151fZQoaAZHQG6iZr56+nJoB00/AWgIR0CxdQ2ll9SddX2UKGgGR0BtXgFkhA4XaAdNPQFoCEdAsXUqwwCbMHV9lChoBkdAcga5U96kZmgHTTUBaAhHQLF1Vva11GN1fZQoaAZHQHI5XHq/ub9oB00hAWgIR0CxdVgdwNsndX2UKGgGR0BtPRlQMx46aAdNAAFoCEdAsXWy7UXpGHV9lChoBkdAcUk14gRsdmgHTTIBaAhHQLF1zJ9RaX91fZQoaAZHQHAe7ZBcAzZoB00HAWgIR0CxdcybH6uXdX2UKGgGR0ByV4DKYAsDaAdL9GgIR0Cxdfy4SYgJdX2UKGgGR0BydS/47A+IaAdNJwFoCEdAsXYnR4QjEHV9lChoBkdAccF5nlGPP2gHTSQBaAhHQLF2iCtzS1F1fZQoaAZHQG5bZrHlwLpoB00JAWgIR0Cxdr0WZZ0TdX2UKGgGR0BwaItrbg0kaAdNTAFoCEdAsXbFIz3yqnV9lChoBkdAcMhLRa5f+mgHTSsBaAhHQLF22clgMMJ1fZQoaAZHQHIanZK3/gloB00CAWgIR0Cxdw/fKp1idX2UKGgGR0Bw0ZcMVk+YaAdNLAFoCEdAsXcmZc9nsnV9lChoBkdAcA3Qqqfe12gHTVYBaAhHQLF3ML0Bfa91fZQoaAZHQHMnRUBGQS1oB01EAWgIR0Cxd0spobn6dX2UKGgGR0BuekuWa+ewaAdNNgFoCEdAsXdYn9ehPHV9lChoBkdAbx8FUyYXwmgHTTEBaAhHQLF3rUILPUt1fZQoaAZHQHJldNzr/sFoB00GAWgIR0Cxd8ePikwfdX2UKGgGR0BuxN6kZaV2aAdNGwFoCEdAsXgor/bTMXV9lChoBkdActTcXFcY7GgHTWIBaAhHQLF4NNorWiF1fZQoaAZHQHBzjFuNxVBoB00mAWgIR0CxeEb74zrNdX2UKGgGR0BShaB7NSqEaAdLwmgIR0CxeE5DArQPdX2UKGgGR0Bwmy+CbtqpaAdNLwFoCEdAsXildD6WPnV9lChoBkdAcAa3KSxJNGgHTR4BaAhHQLF4uKF7D2t1fZQoaAZHQHJiRAOavzRoB0v6aAhHQLF5uz5XU6R1fZQoaAZHQHKVpZOi35NoB01IAWgIR0CxeggHVwxWdX2UKGgGR0Bv33J3gUDdaAdNCgFoCEdAsXokRBeHBXV9lChoBkdAcjoRPGhmG2gHTVEBaAhHQLF6NKVII4V1fZQoaAZHQHETzzZpSJloB00kAWgIR0Cxejnw1BMSdX2UKGgGR0BxECFVT72taAdNUAFoCEdAsXpSySmqHXV9lChoBkdAcT5mmtQsPWgHTU0BaAhHQLF6lSZBsyl1fZQoaAZHQHAv110T101oB00OAWgIR0CxeqxjWkJsdX2UKGgGR0BvUgW1twaSaAdNNwFoCEdAsXq8qd6LO3V9lChoBkdAcbm4fwI+n2gHTScBaAhHQLF7Dma6ST11fZQoaAZHQHIJNqL0jC5oB00JAWgIR0Cxe0b7GecydX2UKGgGR0Bst0Wl/H5raAdNKwFoCEdAsXuOE384xXV9lChoBkdAcmq4HHFPzmgHS/hoCEdAsXuVrIo3JnV9lChoBkdAcGZ17pmmL2gHTTwBaAhHQLF7sZeRgZ11fZQoaAZHQHDg0IkZ75VoB00SAWgIR0Cxe8YiosI3dX2UKGgGR0BxX889wFTvaAdNOwFoCEdAsXvLeUILPXV9lChoBkdActkdDpkf92gHTSABaAhHQLGBJHFxXGR1fZQoaAZHQHLGGlQ/HHZoB0v6aAhHQLGBMnSOR1Z1fZQoaAZHQHIG4NiH6/JoB00YAWgIR0CxgVojW07bdX2UKGgGR0Bvk8KsuFpPaAdNIQFoCEdAsYF25TZQHnV9lChoBkdAUR1RBNVR12gHS8RoCEdAsYGvJGOMl3V9lChoBkdAcht7FsHjZWgHTRYBaAhHQLGBtbt7a7F1fZQoaAZHQHB+YSYgJTloB01AAWgIR0Cxgb4cinpCdX2UKGgGR0ByzO0Sh8IBaAdNJwFoCEdAsYHkvf0mMXV9lChoBkdAchye7+T/yWgHTUMBaAhHQLGCADtw71Z1fZQoaAZHQHJxKdQO4G5oB00OAWgIR0CxghLUgB91dX2UKGgGR0ByfXy/bj95aAdNJgFoCEdAsYIbeBQN1HV9lChoBkdAcFqQmu1WsGgHTSMBaAhHQLGCa7FsHjZ1fZQoaAZHQHGNZEDyOJdoB00nAWgIR0CxgpX9rGipdX2UKGgGR0BUU5ntfG+9aAdLumgIR0CxguYEwFkhdX2UKGgGR0BzRHsHB1s+aAdNXAFoCEdAsYLwNutOmHV9lChoBkdAckDAQg9vCWgHTXMBaAhHQLGDMhX8wYd1fZQoaAZHQG6b22G7BftoB00eAWgIR0Cxg3jfNzKcdX2UKGgGR0Bukh4KQaJiaAdNEgFoCEdAsYPnS1E3KnV9lChoBkdAU6HLs8gZCWgHS+NoCEdAsYP1FPSDy3V9lChoBkdAcCkZVXFLnWgHTRkBaAhHQLGD8+1SflJ1fZQoaAZHQG6J6aCtihFoB01DAWgIR0Cxg/qef7JodX2UKGgGR0BzAF1wHZ9NaAdL/GgIR0CxhB+GbkOqdX2UKGgGR0Bv4IgJTl1baAdNawFoCEdAsYQe5H3DenV9lChoBkdAcbiob4rSVmgHTTEBaAhHQLGEeSVGCqZ1fZQoaAZHQG/Yo0Q9RrJoB00JAWgIR0CxhJ6ZhKDkdX2UKGgGR0Bv7otJ4B3iaAdNZQFoCEdAsYSg3xWkrXV9lChoBkdAcYTZXMhX82gHTRcBaAhHQLGFlA/LTx51fZQoaAZHQG70UhePaL5oB00ZAWgIR0Cxhe7zwtrcdX2UKGgGR0ByIIslLOAzaAdN6QFoCEdAsYX5Kujh1nV9lChoBkdAciBOrQw9JWgHTZABaAhHQLGGBzDn/1h1fZQoaAZHQHFA+ZssQNFoB0vxaAhHQLGGDZlnRLN1fZQoaAZHQG94A7gbZOBoB01rAWgIR0CxhhlbzK9xdX2UKGgGR0BwQ9hgE2YOaAdL92gIR0CxhkXz19ORdX2UKGgGR0BxE6Lfk3juaAdNMgFoCEdAsYaRBZ6lcnV9lChoBkdAcucA7gbZOGgHTSABaAhHQLGGoOFg2Ih1fZQoaAZHQHHMONxVAA1oB0vlaAhHQLGGpvfCQ911fZQoaAZHQHChcyzolldoB01EAWgIR0CxhsjQAuIzdX2UKGgGR0BwYVJvo/zKaAdL+2gIR0CxhuAJkXk6dX2UKGgGR0Bth11Oj7AMaAdNEAFoCEdAsYbox7AtWnV9lChoBkdAYUcMl1KXfWgHTegDaAhHQLGHeFKkEcN1fZQoaAZHQHLkAbuMMqloB02hAWgIR0Cxh7/NeMQ3dX2UKGgGR0BxQkBfa6BiaAdNTgJoCEdAsYhZ/6O5rnV9lChoBkdAcIf8QZn+Q2gHTRMBaAhHQLGIYNYbKih1fZQoaAZHQHBmD2WY4Q1oB00XAWgIR0CxiNYUeuFIdX2UKGgGR0Bwd7HvMKTjaAdL8WgIR0CxiNZkCmuUdX2UKGgGR0Bw6HpaA4GVaAdNFQFoCEdAsYj0B7u2JHV9lChoBkdAcs3H2RJVbWgHTTwBaAhHQLGJWQEIPbx1fZQoaAZHQHJIiIDYAbRoB01lAWgIR0Cxifn2ugYhdX2UKGgGR0ByHQejmCAdaAdNMQFoCEdAsYo69M9KVnV9lChoBkdAc4+T8pCrtGgHTXwBaAhHQLGKaPfKp1l1fZQoaAZHQHI0OzUqhDhoB00kAWgIR0Cxim1VktmMdX2UKGgGR0BwFKWQfZElaAdNUwFoCEdAsYqVcAzYVnV9lChoBkdAciKKE384xWgHTToBaAhHQLGKqEgGKQ91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}