{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7882a9c7f800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700672043472942680, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADXXir7AkfQ+WuaAPBlJgb6RCbq9u2uaPAAAAAAAAAAAVieGPoM71D5yGZm+/geDvvjbCL3xr6u9AAAAAAAAAAB4e4i+krkiP/tkZ72eXaK+BLnyvQUr1LwAAAAAAAAAABrhBj4QNKg/DomxPtOCUr7gnGU+AleYPQAAAAAAAAAAzYKHvDyItz8mXQy/gFOgPtfrajyaz4A9AAAAAAAAAAC9erS+ORYjP4xoID0eYZm+qkIRvpYsYz0AAAAAAAAAAA0Rm72PlDC8IoO/PHAS8TyDEF894ac2PQAAgD8AAIA/Mz6TPeG8oLpi4B+4PJoaszHGDLpaJzg3AACAPwAAgD8AWD4+NryGPzYlmDxNvIu+ZzkQPmndnrwAAAAAAAAAAGDYeT5RJmo/wf4avoS6rL47Q/Q9GkyMvQAAAAAAAAAAGh2cvcPpUbrG3Ng3DVXJMtYZ2blWiP+2AAAAAAAAgD/aENm9j51vvIaSuD0PmE+8C9cDu3mqSL0AAIA/AACAPwo9jj5eaY0/pmk1Pvqig76YPoo+RhBgvQAAAAAAAAAAZoZKvVyjLLoQDkmzX5I1r8vvzbkgoskzAACAPwAAgD8A6sU83NWzP4sMXT5paxa+7IqGPKpTBD4AAAAAAAAAAIBITj1f9SE/Vtd9vkusiL4xfg69//LKvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG4C+9Jz1buMAWyUTR4BjAF0lEdAk0xzcM3IdXV9lChoBkdAcZyf/WDpT2gHTRMCaAhHQJNMoJTl1bJ1fZQoaAZHQGyh/mLcbitoB00uAWgIR0CTTmtlI3BIdX2UKGgGR0BhIXuLJjlQaAdN6ANoCEdAk1/Xc1wYL3V9lChoBkdAbNN0KZ2IPGgHTacBaAhHQJNf4qoZQ551fZQoaAZHQGtw3KB/ZuhoB02WAWgIR0CTYALSuyNXdX2UKGgGR0Bx8EF3Y+SsaAdNygFoCEdAk2QoVM23rnV9lChoBkdAbydfKp1ifGgHTUsBaAhHQJNk01m8M/h1fZQoaAZHQHBHPNFBppNoB00vAWgIR0CTZWcWj45+dX2UKGgGR0BwEEVN5+pgaAdNVgFoCEdAk2aNwrDqGHV9lChoBkdAcIQ/p+tr9GgHTS8BaAhHQJNoTMY/FBJ1fZQoaAZHQG/Rntnf2sdoB01sAWgIR0CTaWte2NNrdX2UKGgGR0Bw9okNWluWaAdNhQFoCEdAk2l18G9pRHV9lChoBkdAclV3GGVRk2gHTWgBaAhHQJNpuHJtBOZ1fZQoaAZHQG5W7o0Q9RtoB01UAWgIR0CTalnFHavidX2UKGgGR0BvrB++dsi0aAdNMgFoCEdAk2s7CrLhaXV9lChoBkdAb480a6z3RGgHTVsCaAhHQJNrXAk9lmR1fZQoaAZHQHF43avicXpoB03OAWgIR0CTbDSfDk2hdX2UKGgGR0BxQKNQ0oBraAdNMgFoCEdAk2yUwnH/+HV9lChoBkdAcjoNvwVj7WgHTVMBaAhHQJNt8T+NtIl1fZQoaAZHQGzqKEvkBCFoB01TAWgIR0CTbi4wh4dIdX2UKGgGR0BxiEzQ/oq1aAdNwwFoCEdAk26RCx/us3V9lChoBkdAcIzkZJkGzWgHTQkBaAhHQJNv9O58Sf11fZQoaAZHQDFbjABT4tZoB0v5aAhHQJNxjN4Z/Ct1fZQoaAZHQG/4grxy4nZoB00kAWgIR0CTcbk30f5ldX2UKGgGR0BxfKUY8+zMaAdNMgFoCEdAk3LH6Eal13V9lChoBkdAclSZccENfGgHTTgBaAhHQJN2VWyTpxF1fZQoaAZHQG7iKoybhFVoB00nAWgIR0CTdrOv+wTudX2UKGgGR0ByLfaJyhi9aAdNHAFoCEdAk3gUOqebu3V9lChoBkdAbrEyB06o2mgHTToBaAhHQJN6Dtv4ubt1fZQoaAZHQHGHv642CNFoB01sAWgIR0CTeyzYEnstdX2UKGgGR0BtMZcZ9/jLaAdNcgFoCEdAk3sv8yeqaXV9lChoBkdAcllLytmthmgHTUkBaAhHQJN8CJ3xFy91fZQoaAZHQG5XkWqLjxVoB01MAWgIR0CTfLNYKYzBdX2UKGgGR0BvfB2IO6NEaAdNfAFoCEdAk3zCfL9uP3V9lChoBkdAcLPnqFAVwmgHTToBaAhHQJN9nrSmZVp1fZQoaAZHQHMVl9jPOY9oB01RAWgIR0CTfm+JP69CdX2UKGgGR0BxeJ1klNUPaAdNOAFoCEdAk397m+0w8HV9lChoBkdAcMNnKGL1mWgHTSUBaAhHQJOAVmHxjKB1fZQoaAZHQHAua0dBBzFoB02WAWgIR0CTgi5byH2zdX2UKGgGR0BxP7v+fh/BaAdNSAFoCEdAk4eSGnGbTnV9lChoBkdAbn1ZzPrv9mgHTaIBaAhHQJOH/rJKaod1fZQoaAZHQHKB6HwgDA9oB029AWgIR0CTiAmGdqcmdX2UKGgGR0BwhjkS26TXaAdNHQFoCEdAk4j/Nqxkd3V9lChoBkdAcHDwsGxD9mgHTYQBaAhHQJOJ3jOs1bd1fZQoaAZHQHHH98JD3M9oB01UAWgIR0CTiondfsu4dX2UKGgGR0Bus6P4mCyyaAdNUgFoCEdAk4ssFhXr+3V9lChoBkdAbs8SeyzHCGgHTTgBaAhHQJOLNfa6BiF1fZQoaAZHQG9ySsjmjj9oB009AWgIR0CTi2kCFK02dX2UKGgGR0ByjQMLF4s3aAdNGAFoCEdAk4wdsvZh8nV9lChoBkdAciciTt9hJGgHTUQBaAhHQJOMML8aXKN1fZQoaAZHQHMKpa7mMfloB01zAWgIR0CTjLsp5NXYdX2UKGgGR0BxGL6xgRbsaAdNVAFoCEdAk51izkZJkHV9lChoBkdAcOD3W4EwFmgHTdEBaAhHQJOdrzI3irF1fZQoaAZHQHCnZeAuqWFoB01BAWgIR0CTnhYGMXJpdX2UKGgGR0Bw9Ox5cC5maAdNMQFoCEdAk56ucYqG13V9lChoBkdAcgdIeo1k2GgHTSMBaAhHQJOhhDQZ4wB1fZQoaAZHQG68F+3H7xdoB00eAWgIR0CTobPQfIS2dX2UKGgGR0BxY9geA/cGaAdNHQFoCEdAk6GzUqhDgXV9lChoBkdAcmRyo4uK42gHTUkBaAhHQJOj8dBBzFN1fZQoaAZHQHBBpzDGcWloB01JAWgIR0CTpXqO938odX2UKGgGR0BsHeokzGgjaAdNEAFoCEdAk6XUYwZflnV9lChoBkdAcHoxCpm29mgHTWQBaAhHQJOl+Mglnh91fZQoaAZHQG88WDg62fFoB01aAWgIR0CTpvF85S3tdX2UKGgGR0BsfOtdRiw0aAdNHgFoCEdAk6cmY8dPtXV9lChoBkdAbXAPI4lyBGgHTUMBaAhHQJOnRwcYIjZ1fZQoaAZHQHDHWYrrgO1oB01LAWgIR0CTp3kwN9YwdX2UKGgGR0BwfBCa7VawaAdNiAFoCEdAk6iDSPU8WHV9lChoBkdAcEmLFXJYDGgHTT8BaAhHQJOonhFVktp1fZQoaAZHQHJgQo5PuXxoB00tAWgIR0CTqTzbeuV5dX2UKGgGR0Bx4SOGTLW7aAdNZwFoCEdAk6pHcQAdXHV9lChoBkdAcBO1zySV4WgHTRcBaAhHQJOrmyMUAT91fZQoaAZHQHA2QljVhCtoB006AWgIR0CTrNVurIYFdX2UKGgGR0Bu3FF6Rhc8aAdNNgFoCEdAk6+YWLxZuHV9lChoBkdAb7CPDpC8e2gHTYABaAhHQJOvxuR9w3p1fZQoaAZHQHAc97ngYP5oB00lAWgIR0CTsKcophF3dX2UKGgGR0BsSZ4SpR4yaAdNHwFoCEdAk7DCb2Dg63V9lChoBkdAbzk2XLNfPWgHTYYCaAhHQJOzLsMRYih1fZQoaAZHQG7pnIIWxhVoB00tAWgIR0CTszCHRCyAdX2UKGgGR0BtLo5o4+8oaAdNRwFoCEdAk7Q9E1EVnHV9lChoBkdAbn8koF3Y+WgHTUIBaAhHQJO0pW6shgV1fZQoaAZHQHHidBrvb49oB00aAWgIR0CTtVyLhrFgdX2UKGgGR0Bvb0vXbuc+aAdNVgFoCEdAk7VefZmI03V9lChoBkdAcQu7yhBZ6mgHTTMBaAhHQJO1dpqREF51fZQoaAZHQHAlmc8TzupoB02EAWgIR0CTtfH2AXl9dX2UKGgGR0BtQ4u9OARTaAdNPAFoCEdAk7ghdld1MnV9lChoBkdAcRUee4Cp32gHTRMBaAhHQJO5pKqXF991fZQoaAZHQHDq5bILgGdoB01JAWgIR0CTun0iyIHkdX2UKGgGR0BxQAd0aIepaAdNzAFoCEdAk7wlNQCSzXV9lChoBkdAbYSYDTz/ZWgHTUIBaAhHQJPAjZOBUaR1fZQoaAZHQHC3Pio86mxoB01HAWgIR0CTwQOFQEZBdX2UKGgGR0BtmN2xIJ7caAdNaQFoCEdAk8HZGOMl1XV9lChoBkdAbwh3ztkWh2gHTXYBaAhHQJPCz3evZAZ1fZQoaAZHQHCHH5SFXaJoB009AWgIR0CTwzUgSvkjdX2UKGgGR0BylCUyHmA9aAdNJAFoCEdAk8NvdEb5unV9lChoBkdAbxV2St/4I2gHTUABaAhHQJPEdlcyFf11fZQoaAZHQHGlLi2lVLloB00+AWgIR0CTxbNIbwSbdX2UKGgGR0Bu+oJAt4A0aAdNTQFoCEdAk8chQ3xWk3V9lChoBkdAcNYA0Kqn32gHTXEBaAhHQJPIO1E3Kjl1fZQoaAZHQHEengYP5HpoB000AWgIR0CTyJ0Syt3fdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}