--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Biobert-base-cased-v1.2-finetuned-ner-CRAFT-EN-FR-ES-IT-DE-Aug-NoEWC results: [] --- # Biobert-base-cased-v1.2-finetuned-ner-CRAFT-EN-FR-ES-IT-DE-Aug-NoEWC This model is a fine-tuned version of [StivenLancheros/Biobert-base-cased-v1.2-finetuned-ner-CRAFT-EN-FR-ES-IT-DE2-NoEWC](https://huggingface.co/StivenLancheros/Biobert-base-cased-v1.2-finetuned-ner-CRAFT-EN-FR-ES-IT-DE2-NoEWC) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4245 - Precision: 0.7158 - Recall: 0.7763 - F1: 0.7448 - Accuracy: 0.9230 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4287 | 1.0 | 1360 | 0.4776 | 0.6125 | 0.7809 | 0.6865 | 0.8944 | | 0.274 | 2.0 | 2720 | 0.4727 | 0.6370 | 0.7705 | 0.6974 | 0.9026 | | 0.2219 | 3.0 | 4080 | 0.4405 | 0.6790 | 0.7695 | 0.7215 | 0.9134 | | 0.1964 | 4.0 | 5440 | 0.4245 | 0.7158 | 0.7763 | 0.7448 | 0.9230 | | 0.1599 | 5.0 | 6800 | 0.4378 | 0.7029 | 0.7732 | 0.7364 | 0.9204 | | 0.1489 | 6.0 | 8160 | 0.4324 | 0.7018 | 0.7749 | 0.7365 | 0.9196 | | 0.1342 | 7.0 | 9520 | 0.4534 | 0.7131 | 0.7867 | 0.7481 | 0.9216 | | 0.12 | 8.0 | 10880 | 0.4532 | 0.7230 | 0.7865 | 0.7534 | 0.9243 | | 0.1135 | 9.0 | 12240 | 0.4688 | 0.7155 | 0.7705 | 0.7420 | 0.9206 | | 0.107 | 10.0 | 13600 | 0.4713 | 0.7214 | 0.7863 | 0.7524 | 0.9241 | | 0.1004 | 11.0 | 14960 | 0.4594 | 0.7278 | 0.7823 | 0.7541 | 0.9251 | | 0.093 | 12.0 | 16320 | 0.4564 | 0.7343 | 0.7937 | 0.7628 | 0.9275 | | 0.0862 | 13.0 | 17680 | 0.4699 | 0.7242 | 0.7970 | 0.7588 | 0.9262 | | 0.0788 | 14.0 | 19040 | 0.4745 | 0.7397 | 0.7935 | 0.7657 | 0.9285 | | 0.0785 | 15.0 | 20400 | 0.4822 | 0.7389 | 0.7998 | 0.7682 | 0.9283 | | 0.0711 | 16.0 | 21760 | 0.5031 | 0.7255 | 0.7964 | 0.7593 | 0.9264 | | 0.073 | 17.0 | 23120 | 0.5038 | 0.7317 | 0.7976 | 0.7632 | 0.9274 | | 0.0695 | 18.0 | 24480 | 0.4860 | 0.7411 | 0.8016 | 0.7702 | 0.9296 | | 0.0649 | 19.0 | 25840 | 0.4978 | 0.7376 | 0.7977 | 0.7665 | 0.9285 | | 0.0605 | 20.0 | 27200 | 0.4983 | 0.7371 | 0.7974 | 0.7661 | 0.9286 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2