File size: 1,293 Bytes
4e6f8d5
 
 
6d8b6f3
4e6f8d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from handler import EndpointHandler

# init handler
my_handler = EndpointHandler()

# prepare sample payload
embedding_input = {
    "inputs": {
        "batch": [
            {
                "image": "https://lp2.hm.com/hmgoepprod?set=source[/23/ab/23ab27480dd2dfc7007745402d3b8caaf756ee70.jpg],origin[dam],category[],type[DESCRIPTIVESTILLLIFE],res[m],hmver[2]&call=url[file:/product/style]",
                "description": "test",
            }
        ]
    },
    "type": "embedd",
}
classify_input = {
    "inputs": {
        "candidates": [
            "Bohemian",
            "Vintage",
            "Streetwear",
            "Preppy",
            "Minimalist",
            "Glamorous",
            "Punk",
            "Romantic",
            "Classic",
            "Avant-garde",
            "Grunge",
            "Retro",
            "Gothic",
            "Hippie",
            "Eco-friendly",
        ],
        "image": "https://static.zara.net/assets/public/bb1f/0983/a29f44e18ec9/3b7dd5791c67/05575420427-e1/05575420427-e1.jpg?ts=1708614949903&w=1126",
    },
    "type": "classify",
}

# test the handler
embedd_pred = my_handler(embedding_input)
classify_pred = my_handler(classify_input)

# show results
print("embedd_pred", embedd_pred)
print("classify_pred", classify_pred)