AjayP13 commited on
Commit
98710b0
1 Parent(s): 5d9e7a5

Pushed by DataDreamer

Browse files

Update datadreamer.json

Files changed (1) hide show
  1. datadreamer.json +61 -0
datadreamer.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_card": {
3
+ "Date & Time": "2024-07-21T15:59:10.187730",
4
+ "Model Card": [
5
+ "https://huggingface.co/FacebookAI/roberta-base"
6
+ ],
7
+ "License Information": [
8
+ "mit"
9
+ ],
10
+ "Citation Information": [
11
+ "\n@inproceedings{Wolf_Transformers_State-of-the-Art_Natural_2020,\n author = {Wolf, Thomas and Debut, Lysandre and Sanh, Victor and Chaumond, Julien",
12
+ "\n@Misc{peft,\n title = {PEFT: State-of-the-art Parameter-Efficient Fine-Tuning methods},\n author = {Sourab Mangrulkar and Sylvain Gugger and Lysandre Debut and Younes",
13
+ "@article{DBLP:journals/corr/abs-1907-11692,\n author = {Yinhan Liu and\n Myle Ott and\n Naman Goyal and\n Jingfei Du and\n Mandar Joshi and\n Danqi Chen and\n Omer Levy and\n Mike Lewis and\n Luke Zettlemoyer and\n Veselin Stoyanov},\n title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach},\n journal = {CoRR},\n volume = {abs/1907.11692},\n year = {2019},\n url = {http://arxiv.org/abs/1907.11692},\n archivePrefix = {arXiv},\n eprint = {1907.11692},\n timestamp = {Thu, 01 Aug 2019 08:59:33 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}",
14
+ "@inproceedings{reimers-2019-sentence-bert,\n title = \"Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks\",\n author = \"Reimers, Nils and Gurevych, Iryna\",\n booktitle = \"Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing\",\n month = \"11\",\n year = \"2019\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://arxiv.org/abs/1908.10084\",\n}"
15
+ ]
16
+ },
17
+ "data_card": {
18
+ "Get SynthSTEL Training Triplets Dataset": {
19
+ "Date & Time": "2024-07-21T13:01:08.536821",
20
+ "Dataset Name": [
21
+ "SynthSTEL/styledistance_training_triplets_v2"
22
+ ],
23
+ "Dataset Card": [
24
+ "https://huggingface.co/datasets/SynthSTEL/styledistance_training_triplets_v2"
25
+ ]
26
+ },
27
+ "Get SynthSTEL Training Triplets Dataset (train split)": {
28
+ "Date & Time": "2024-07-21T13:03:10.150361"
29
+ },
30
+ "Get SynthSTEL Training Triplets Dataset (train split) (shuffle)": {
31
+ "Date & Time": "2024-07-21T15:20:06.418759"
32
+ }
33
+ },
34
+ "__version__": "0.35.0",
35
+ "datetime": "2024-07-21T15:20:07.042657",
36
+ "type": "TrainSentenceTransformer",
37
+ "name": "Train StyleDistance Model",
38
+ "version": 1.0,
39
+ "fingerprint": "b5d8928303367cc0",
40
+ "req_versions": {
41
+ "dill": "0.3.8",
42
+ "sqlitedict": "2.1.0",
43
+ "torch": "2.3.1",
44
+ "numpy": "1.26.4",
45
+ "transformers": "4.40.1",
46
+ "datasets": "2.17.0",
47
+ "huggingface_hub": "0.23.4",
48
+ "accelerate": "0.32.1",
49
+ "peft": "0.11.1",
50
+ "tiktoken": "0.7.0",
51
+ "tokenizers": "0.19.1",
52
+ "openai": "1.35.13",
53
+ "ctransformers": "0.2.27",
54
+ "optimum": "1.21.2",
55
+ "bitsandbytes": "0.43.1",
56
+ "litellm": "1.31.14",
57
+ "trl": "0.8.1",
58
+ "setfit": "1.0.3"
59
+ },
60
+ "interpreter": "3.10.9 (main, Apr 17 2023, 21:32:03) [GCC 7.5.0]"
61
+ }