Pushed by DataDreamer
Browse filesUpdate datadreamer.json
- datadreamer.json +61 -0
datadreamer.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_card": {
|
3 |
+
"Date & Time": "2024-07-21T15:59:10.187730",
|
4 |
+
"Model Card": [
|
5 |
+
"https://huggingface.co/FacebookAI/roberta-base"
|
6 |
+
],
|
7 |
+
"License Information": [
|
8 |
+
"mit"
|
9 |
+
],
|
10 |
+
"Citation Information": [
|
11 |
+
"\n@inproceedings{Wolf_Transformers_State-of-the-Art_Natural_2020,\n author = {Wolf, Thomas and Debut, Lysandre and Sanh, Victor and Chaumond, Julien",
|
12 |
+
"\n@Misc{peft,\n title = {PEFT: State-of-the-art Parameter-Efficient Fine-Tuning methods},\n author = {Sourab Mangrulkar and Sylvain Gugger and Lysandre Debut and Younes",
|
13 |
+
"@article{DBLP:journals/corr/abs-1907-11692,\n author = {Yinhan Liu and\n Myle Ott and\n Naman Goyal and\n Jingfei Du and\n Mandar Joshi and\n Danqi Chen and\n Omer Levy and\n Mike Lewis and\n Luke Zettlemoyer and\n Veselin Stoyanov},\n title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach},\n journal = {CoRR},\n volume = {abs/1907.11692},\n year = {2019},\n url = {http://arxiv.org/abs/1907.11692},\n archivePrefix = {arXiv},\n eprint = {1907.11692},\n timestamp = {Thu, 01 Aug 2019 08:59:33 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}",
|
14 |
+
"@inproceedings{reimers-2019-sentence-bert,\n title = \"Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks\",\n author = \"Reimers, Nils and Gurevych, Iryna\",\n booktitle = \"Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing\",\n month = \"11\",\n year = \"2019\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://arxiv.org/abs/1908.10084\",\n}"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
"data_card": {
|
18 |
+
"Get SynthSTEL Training Triplets Dataset": {
|
19 |
+
"Date & Time": "2024-07-21T13:01:08.536821",
|
20 |
+
"Dataset Name": [
|
21 |
+
"SynthSTEL/styledistance_training_triplets_v2"
|
22 |
+
],
|
23 |
+
"Dataset Card": [
|
24 |
+
"https://huggingface.co/datasets/SynthSTEL/styledistance_training_triplets_v2"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
"Get SynthSTEL Training Triplets Dataset (train split)": {
|
28 |
+
"Date & Time": "2024-07-21T13:03:10.150361"
|
29 |
+
},
|
30 |
+
"Get SynthSTEL Training Triplets Dataset (train split) (shuffle)": {
|
31 |
+
"Date & Time": "2024-07-21T15:20:06.418759"
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"__version__": "0.35.0",
|
35 |
+
"datetime": "2024-07-21T15:20:07.042657",
|
36 |
+
"type": "TrainSentenceTransformer",
|
37 |
+
"name": "Train StyleDistance Model",
|
38 |
+
"version": 1.0,
|
39 |
+
"fingerprint": "b5d8928303367cc0",
|
40 |
+
"req_versions": {
|
41 |
+
"dill": "0.3.8",
|
42 |
+
"sqlitedict": "2.1.0",
|
43 |
+
"torch": "2.3.1",
|
44 |
+
"numpy": "1.26.4",
|
45 |
+
"transformers": "4.40.1",
|
46 |
+
"datasets": "2.17.0",
|
47 |
+
"huggingface_hub": "0.23.4",
|
48 |
+
"accelerate": "0.32.1",
|
49 |
+
"peft": "0.11.1",
|
50 |
+
"tiktoken": "0.7.0",
|
51 |
+
"tokenizers": "0.19.1",
|
52 |
+
"openai": "1.35.13",
|
53 |
+
"ctransformers": "0.2.27",
|
54 |
+
"optimum": "1.21.2",
|
55 |
+
"bitsandbytes": "0.43.1",
|
56 |
+
"litellm": "1.31.14",
|
57 |
+
"trl": "0.8.1",
|
58 |
+
"setfit": "1.0.3"
|
59 |
+
},
|
60 |
+
"interpreter": "3.10.9 (main, Apr 17 2023, 21:32:03) [GCC 7.5.0]"
|
61 |
+
}
|