SuburbanLion commited on
Commit
43a6164
·
1 Parent(s): e127ed3

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1048.80 +/- 251.18
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36f3391caf7a3140794d4c8f854fbc5b8ee6771d9c7a88a1c48b21121a1866c4
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f15d87c95e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f15d87c9670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f15d87c9700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f15d87c9790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f15d87c9820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f15d87c98b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f15d87c9940>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f15d87c99d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f15d87c9a60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f15d87c9af0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f15d87c9b80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f15d87c9c10>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f15d87c5c00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674230478919876329,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFeRTr8sMaG/kol3PG9E6j5vJYG/xwbSPTZ7Ir1vCBq9UtoovxJxqT8FhzO9hxDmPJL3Kr8MFLU+q8rGPna8Wj9Fx4i9GBz/vlAeGz+gkLU//2LTvvOBm7+SW3e+/yjKPjuVXz/L5BM/jFILP5XQVz8PIcM90y2cv8QWcT3Lngs//E9pwICNhj0N2Sy/30eYP/3KxL6JMTxAkkkdv2A7f70JdaY9PRS6P9l7B78LLYY/fLJJvtyTbL3rEc2/ImFRPtEZND5rdWJA+8cpvxI2qj87lV8/y+QTP4xSCz971Ze/yb9mv4v51L/9Uhi/zuXHvXirxD5ClNI/4I8zvIK9HL/NsSk/zGZ2P0jIer+60eW97syTvnLWuz9qKlU/CiuMPJsGpD/k5BZAPW8yPwIHpTxlq8C+lK2iPwOHWL37YJY+AI+Sv8vkEz+MUgs/ldBXP3NCO77lgTg+cLgUPxpTEj/hJhW/epppPgiVCj9xpdw998+cPnVCHkBvr/Y+Mq3nvvOojb+kH3s/EXIev0PcgD4S+VM/S1VAPqY+1T6EzgA/gjExv3mpsL2md7++s/KzPjuVXz/L5BM/jFILP3vVl7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACOK8Q1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAF6MDvQAAAAACgADAAAAAAHSok70AAAAAZFjzPwAAAAAkdqy7AAAAALOQAEAAAAAA5RPrvQAAAAAhZ92/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyoBuNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIwwOTwAAAAAscPhvwAAAAALsrs9AAAAAK+R4j8AAAAA58ICvgAAAAATf+8/AAAAAJLbvL0AAAAAgv72vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSGCzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAr7Ay+AAAAABBz+r8AAAAA9d0gPAAAAABvnv4/AAAAAP3qu7wAAAAAyA/bPwAAAABO2hc9AAAAAJnp7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9+js2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAy8kEvgAAAAC7Tv+/AAAAACq6Tz0AAAAALCjrPwAAAADMzJO7AAAAAMzW6T8AAAAAf2ZmPQAAAADY3+W/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJU6T1tfoieMAWyUTegDjAF0lEdAp1PEZm7J4nV9lChoBkdAibhXhGYrrmgHTegDaAhHQKdZVuqFRHh1fZQoaAZHQINHzzmOlwdoB03oA2gIR0CnWj5PM0P6dX2UKGgGR0CVYH/MGHHnaAdN6ANoCEdAp1tW3c580HV9lChoBkdAlFikpuuRtGgHTegDaAhHQKdfr03fhuR1fZQoaAZHQJL8pLUTcqRoB03oA2gIR0CnZRQpF1B/dX2UKGgGR0CVa8xtHhCMaAdN6ANoCEdAp2YAmgJ1JXV9lChoBkdAhHOAKF7D22gHTegDaAhHQKdnI7z06HV1fZQoaAZHQJHahTqB3A5oB03oA2gIR0Cna6oAGSpzdX2UKGgGR0CWMOrGR3eOaAdN6ANoCEdAp3EsmY0EYHV9lChoBkdAjnRuD8LromgHTegDaAhHQKdyGYfGMn91fZQoaAZHQIxoSCrcTJ1oB03oA2gIR0Cnczce8wpOdX2UKGgGR0CYpoYXO4XoaAdN6ANoCEdAp3ea6lLvkXV9lChoBkdAkj2j3Ehq02gHTegDaAhHQKd9EyBTXJ51fZQoaAZHQIklJrFfiP1oB03oA2gIR0CnfgqdH2AYdX2UKGgGR0CSgsJEH+qBaAdN6ANoCEdAp38jxoZhrnV9lChoBkdAkLoXZf2K22gHTegDaAhHQKeDs34Kx9p1fZQoaAZHQJNZjqKP4mFoB03oA2gIR0CniSoGY8dQdX2UKGgGR0CREr1J17pnaAdN6ANoCEdAp4omRxLkCHV9lChoBkdAjiEQbMottmgHTegDaAhHQKeLOslLOA11fZQoaAZHQJJ9I74i5d5oB03oA2gIR0Cnj7pGe+VUdX2UKGgGR0CS9i2GZeAvaAdN6ANoCEdAp5U4z7/GVHV9lChoBkdAiyF0qYqoZWgHTegDaAhHQKeWMv6CUX51fZQoaAZHQIpkQBV+7UZoB03oA2gIR0Cnl00uL740dX2UKGgGR0CQKWX668QJaAdN6ANoCEdAp5vQlpoK2XV9lChoBkdAkSY1Iy0rsmgHTegDaAhHQKehSee4Cp51fZQoaAZHQJMP5z5oGpxoB03oA2gIR0CnokbVz6rOdX2UKGgGR0CVZvy925hCaAdN6ANoCEdAp6NbTz/ZNHV9lChoBkdAjEcfthNM5GgHTegDaAhHQKenuNZNfw91fZQoaAZHQIwEP2ZiNKhoB03oA2gIR0CnrTYm9g4PdX2UKGgGR0BuLYxHoX9BaAdN6ANoCEdAp64xxDLKWHV9lChoBkdAhKGe6iCaqmgHTegDaAhHQKevTAKv3al1fZQoaAZHQG9HuTibUgBoB03oA2gIR0Cns7edkJ8fdX2UKGgGR0CE3xaxHG0eaAdN6ANoCEdAp7kiAhB7eHV9lChoBkdAiNR0jTrmhmgHTegDaAhHQKe6Dko4MnZ1fZQoaAZHQJC2BbaAWi1oB03oA2gIR0CnuzTH80k4dX2UKGgGR0CLT3Kg7HQyaAdN6ANoCEdAp7+ou/UONHV9lChoBkdAkZf2Q0XP7mgHTegDaAhHQKfFHX5FgD11fZQoaAZHQJLGUth/iHZoB03oA2gIR0CnxhRPO6d2dX2UKGgGR0COkXFiKBNFaAdN6ANoCEdAp8dENKAavXV9lChoBkdAkQkexrzoU2gHTegDaAhHQKfL3qN6w+t1fZQoaAZHQJEdcnb7CSBoB03oA2gIR0Cn0VjbzshQdX2UKGgGR0CScnjVQQ+VaAdN6ANoCEdAp9JJpeu3dHV9lChoBkdAk/giOBDohmgHTegDaAhHQKfTcESM98t1fZQoaAZHQJKlOfGuLaVoB03oA2gIR0Cn19WcjJMhdX2UKGgGR0CSE8SqU/wBaAdN6ANoCEdAp91LEcbR4XV9lChoBkdAkt7sZk0782gHTegDaAhHQKfeMVwgkkd1fZQoaAZHQJZJqm51/2FoB03oA2gIR0Cn30HrY5DJdX2UKGgGR0CWpMs8gZCOaAdN6ANoCEdAp+OyI3zcynV9lChoBkdAkSL4pUgjhWgHTegDaAhHQKfpHDVH4Gl1fZQoaAZHQJU10P07KaJoB03oA2gIR0Cn6girT6SDdX2UKGgGR0CTrlYgq3EyaAdN6ANoCEdAp+sWMdcSoXV9lChoBkdAkRAq/VRUFWgHTegDaAhHQKfvnXSSeRR1fZQoaAZHQIxGXAdn005oB03oA2gIR0Cn9QjAaef7dX2UKGgGR0CLkPp1zQu3aAdN6ANoCEdAp/YCEBbOeXV9lChoBkdAfhlG5MDfWWgHTegDaAhHQKf3GeT3Zf51fZQoaAZHQIoFpqh11W9oB03oA2gIR0Cn+5grH2h7dX2UKGgGR0CM30BDG96DaAdN6ANoCEdAqAEJFgDzRXV9lChoBkdAkVERLXcxkGgHTegDaAhHQKgB+w8nuzB1fZQoaAZHQIj0VNet0V9oB03oA2gIR0CoAyyWRigCdX2UKGgGR0CI4PfQ8fV7aAdN6ANoCEdAqAegYekpJHV9lChoBkdAjm8pNsWO62gHTegDaAhHQKgNIg00m+l1fZQoaAZHQJEqdNFjNINoB03oA2gIR0CoDg5hz/6wdX2UKGgGR0CNoX2rXDm9aAdN6ANoCEdAqA8kDKYAsHV9lChoBkdAkNUnUlRgqmgHTegDaAhHQKgTkdQwbl11fZQoaAZHQJG3Yq5LAYZoB03oA2gIR0CoGQ1jRUm2dX2UKGgGR0CSRfGEPDpDaAdN6ANoCEdAqBn4h8pkPXV9lChoBkdAk5DwDA8B/GgHTegDaAhHQKgbEz544ZN1fZQoaAZHQI+NwAGSpzdoB03oA2gIR0CoH2ujh1kldX2UKGgGR0CP2YanaWX1aAdN6ANoCEdAqCTN4qwyI3V9lChoBkdAkddSQo1DSmgHTegDaAhHQKglyDoQnQZ1fZQoaAZHQHolt5hScb1oB03oA2gIR0CoJttCAtnPdX2UKGgGR0CF5PkcS5AhaAdN6ANoCEdAqCtZZW7vonV9lChoBkdAkSKh0hePaWgHTegDaAhHQKgw2FfReC11fZQoaAZHQI+gtR3u/lBoB03oA2gIR0CoMcFfAsTWdX2UKGgGR0CUHlRp1zQvaAdN6ANoCEdAqDLLlT3qRnV9lChoBkdAiXTo1k1/D2gHTegDaAhHQKg3L/bTMJR1fZQoaAZHQJDdisHSncdoB03oA2gIR0CoPK5+YtxudX2UKGgGR0CQzXCLdepoaAdN6ANoCEdAqD2pIDoyK3V9lChoBkdAjg3zisGPgmgHTegDaAhHQKg+unQ6ZIB1fZQoaAZHQIiFgQHzH0doB03oA2gIR0CoQz8Zk079dX2UKGgGR0CPegdYGMXKaAdN6ANoCEdAqEjPq7iAD3V9lChoBkdAjxu371qWT2gHTegDaAhHQKhJx987ZFp1fZQoaAZHQJHKY6ZH/cZoB03oA2gIR0CoSuIJ7b+MdX2UKGgGR0CQi/w2l2vCaAdN6ANoCEdAqE9a0lZ5iXV9lChoBkdAkFcs23rleWgHTegDaAhHQKhU2uwHJLd1fZQoaAZHQJMsYXfqHGloB03oA2gIR0CoVc8c+7lJdX2UKGgGR0COH3hnanJlaAdN6ANoCEdAqFbpY9xIa3V9lChoBkdAibyOxB3RomgHTegDaAhHQKhbXM36yjZ1fZQoaAZHQJA/0YLsrupoB03oA2gIR0CoYNs5GSZCdX2UKGgGR0CPzay6+WWyaAdN6ANoCEdAqGHPp6hQFnV9lChoBkdAkv0GYfGMoGgHTegDaAhHQKhi57IDHOt1fZQoaAZHQJOtzn9vS+hoB03oA2gIR0CoZ1C0OVgQdX2UKGgGR0CUAXfwqiGnaAdN6ANoCEdAqGzF0A93bHV9lChoBkdAjtrDTa0x/WgHTegDaAhHQKhttTTfBN51fZQoaAZHQIjxj4WUKRdoB03oA2gIR0Cobs5+pfhNdX2UKGgGR0CKoU2UjcEeaAdN6ANoCEdAqHNNQ40dinV9lChoBkdAk2EBhDw6Q2gHTegDaAhHQKh488scyWR1fZQoaAZHQJOKAk3S8apoB03oA2gIR0CoeeTyauwHdX2UKGgGR0CGcEpON5t4aAdN6ANoCEdAqHsB6nivPnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62880,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe86bcd8fcac735e3568fe9c4c6d203025e1dacd30c4845f60f447a90bdc6035
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1da82ee3ef8ac08e2ec00c5ad015d8af0bcbcd820c1de2f44545ac20ab60f557
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f15d87c95e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f15d87c9670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f15d87c9700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f15d87c9790>", "_build": "<function ActorCriticPolicy._build at 0x7f15d87c9820>", "forward": "<function ActorCriticPolicy.forward at 0x7f15d87c98b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f15d87c9940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f15d87c99d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f15d87c9a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f15d87c9af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f15d87c9b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f15d87c9c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f15d87c5c00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674230478919876329, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFeRTr8sMaG/kol3PG9E6j5vJYG/xwbSPTZ7Ir1vCBq9UtoovxJxqT8FhzO9hxDmPJL3Kr8MFLU+q8rGPna8Wj9Fx4i9GBz/vlAeGz+gkLU//2LTvvOBm7+SW3e+/yjKPjuVXz/L5BM/jFILP5XQVz8PIcM90y2cv8QWcT3Lngs//E9pwICNhj0N2Sy/30eYP/3KxL6JMTxAkkkdv2A7f70JdaY9PRS6P9l7B78LLYY/fLJJvtyTbL3rEc2/ImFRPtEZND5rdWJA+8cpvxI2qj87lV8/y+QTP4xSCz971Ze/yb9mv4v51L/9Uhi/zuXHvXirxD5ClNI/4I8zvIK9HL/NsSk/zGZ2P0jIer+60eW97syTvnLWuz9qKlU/CiuMPJsGpD/k5BZAPW8yPwIHpTxlq8C+lK2iPwOHWL37YJY+AI+Sv8vkEz+MUgs/ldBXP3NCO77lgTg+cLgUPxpTEj/hJhW/epppPgiVCj9xpdw998+cPnVCHkBvr/Y+Mq3nvvOojb+kH3s/EXIev0PcgD4S+VM/S1VAPqY+1T6EzgA/gjExv3mpsL2md7++s/KzPjuVXz/L5BM/jFILP3vVl7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACOK8Q1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAF6MDvQAAAAACgADAAAAAAHSok70AAAAAZFjzPwAAAAAkdqy7AAAAALOQAEAAAAAA5RPrvQAAAAAhZ92/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyoBuNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIwwOTwAAAAAscPhvwAAAAALsrs9AAAAAK+R4j8AAAAA58ICvgAAAAATf+8/AAAAAJLbvL0AAAAAgv72vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSGCzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAr7Ay+AAAAABBz+r8AAAAA9d0gPAAAAABvnv4/AAAAAP3qu7wAAAAAyA/bPwAAAABO2hc9AAAAAJnp7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9+js2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAy8kEvgAAAAC7Tv+/AAAAACq6Tz0AAAAALCjrPwAAAADMzJO7AAAAAMzW6T8AAAAAf2ZmPQAAAADY3+W/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJU6T1tfoieMAWyUTegDjAF0lEdAp1PEZm7J4nV9lChoBkdAibhXhGYrrmgHTegDaAhHQKdZVuqFRHh1fZQoaAZHQINHzzmOlwdoB03oA2gIR0CnWj5PM0P6dX2UKGgGR0CVYH/MGHHnaAdN6ANoCEdAp1tW3c580HV9lChoBkdAlFikpuuRtGgHTegDaAhHQKdfr03fhuR1fZQoaAZHQJL8pLUTcqRoB03oA2gIR0CnZRQpF1B/dX2UKGgGR0CVa8xtHhCMaAdN6ANoCEdAp2YAmgJ1JXV9lChoBkdAhHOAKF7D22gHTegDaAhHQKdnI7z06HV1fZQoaAZHQJHahTqB3A5oB03oA2gIR0Cna6oAGSpzdX2UKGgGR0CWMOrGR3eOaAdN6ANoCEdAp3EsmY0EYHV9lChoBkdAjnRuD8LromgHTegDaAhHQKdyGYfGMn91fZQoaAZHQIxoSCrcTJ1oB03oA2gIR0Cnczce8wpOdX2UKGgGR0CYpoYXO4XoaAdN6ANoCEdAp3ea6lLvkXV9lChoBkdAkj2j3Ehq02gHTegDaAhHQKd9EyBTXJ51fZQoaAZHQIklJrFfiP1oB03oA2gIR0CnfgqdH2AYdX2UKGgGR0CSgsJEH+qBaAdN6ANoCEdAp38jxoZhrnV9lChoBkdAkLoXZf2K22gHTegDaAhHQKeDs34Kx9p1fZQoaAZHQJNZjqKP4mFoB03oA2gIR0CniSoGY8dQdX2UKGgGR0CREr1J17pnaAdN6ANoCEdAp4omRxLkCHV9lChoBkdAjiEQbMottmgHTegDaAhHQKeLOslLOA11fZQoaAZHQJJ9I74i5d5oB03oA2gIR0Cnj7pGe+VUdX2UKGgGR0CS9i2GZeAvaAdN6ANoCEdAp5U4z7/GVHV9lChoBkdAiyF0qYqoZWgHTegDaAhHQKeWMv6CUX51fZQoaAZHQIpkQBV+7UZoB03oA2gIR0Cnl00uL740dX2UKGgGR0CQKWX668QJaAdN6ANoCEdAp5vQlpoK2XV9lChoBkdAkSY1Iy0rsmgHTegDaAhHQKehSee4Cp51fZQoaAZHQJMP5z5oGpxoB03oA2gIR0CnokbVz6rOdX2UKGgGR0CVZvy925hCaAdN6ANoCEdAp6NbTz/ZNHV9lChoBkdAjEcfthNM5GgHTegDaAhHQKenuNZNfw91fZQoaAZHQIwEP2ZiNKhoB03oA2gIR0CnrTYm9g4PdX2UKGgGR0BuLYxHoX9BaAdN6ANoCEdAp64xxDLKWHV9lChoBkdAhKGe6iCaqmgHTegDaAhHQKevTAKv3al1fZQoaAZHQG9HuTibUgBoB03oA2gIR0Cns7edkJ8fdX2UKGgGR0CE3xaxHG0eaAdN6ANoCEdAp7kiAhB7eHV9lChoBkdAiNR0jTrmhmgHTegDaAhHQKe6Dko4MnZ1fZQoaAZHQJC2BbaAWi1oB03oA2gIR0CnuzTH80k4dX2UKGgGR0CLT3Kg7HQyaAdN6ANoCEdAp7+ou/UONHV9lChoBkdAkZf2Q0XP7mgHTegDaAhHQKfFHX5FgD11fZQoaAZHQJLGUth/iHZoB03oA2gIR0CnxhRPO6d2dX2UKGgGR0COkXFiKBNFaAdN6ANoCEdAp8dENKAavXV9lChoBkdAkQkexrzoU2gHTegDaAhHQKfL3qN6w+t1fZQoaAZHQJEdcnb7CSBoB03oA2gIR0Cn0VjbzshQdX2UKGgGR0CScnjVQQ+VaAdN6ANoCEdAp9JJpeu3dHV9lChoBkdAk/giOBDohmgHTegDaAhHQKfTcESM98t1fZQoaAZHQJKlOfGuLaVoB03oA2gIR0Cn19WcjJMhdX2UKGgGR0CSE8SqU/wBaAdN6ANoCEdAp91LEcbR4XV9lChoBkdAkt7sZk0782gHTegDaAhHQKfeMVwgkkd1fZQoaAZHQJZJqm51/2FoB03oA2gIR0Cn30HrY5DJdX2UKGgGR0CWpMs8gZCOaAdN6ANoCEdAp+OyI3zcynV9lChoBkdAkSL4pUgjhWgHTegDaAhHQKfpHDVH4Gl1fZQoaAZHQJU10P07KaJoB03oA2gIR0Cn6girT6SDdX2UKGgGR0CTrlYgq3EyaAdN6ANoCEdAp+sWMdcSoXV9lChoBkdAkRAq/VRUFWgHTegDaAhHQKfvnXSSeRR1fZQoaAZHQIxGXAdn005oB03oA2gIR0Cn9QjAaef7dX2UKGgGR0CLkPp1zQu3aAdN6ANoCEdAp/YCEBbOeXV9lChoBkdAfhlG5MDfWWgHTegDaAhHQKf3GeT3Zf51fZQoaAZHQIoFpqh11W9oB03oA2gIR0Cn+5grH2h7dX2UKGgGR0CM30BDG96DaAdN6ANoCEdAqAEJFgDzRXV9lChoBkdAkVERLXcxkGgHTegDaAhHQKgB+w8nuzB1fZQoaAZHQIj0VNet0V9oB03oA2gIR0CoAyyWRigCdX2UKGgGR0CI4PfQ8fV7aAdN6ANoCEdAqAegYekpJHV9lChoBkdAjm8pNsWO62gHTegDaAhHQKgNIg00m+l1fZQoaAZHQJEqdNFjNINoB03oA2gIR0CoDg5hz/6wdX2UKGgGR0CNoX2rXDm9aAdN6ANoCEdAqA8kDKYAsHV9lChoBkdAkNUnUlRgqmgHTegDaAhHQKgTkdQwbl11fZQoaAZHQJG3Yq5LAYZoB03oA2gIR0CoGQ1jRUm2dX2UKGgGR0CSRfGEPDpDaAdN6ANoCEdAqBn4h8pkPXV9lChoBkdAk5DwDA8B/GgHTegDaAhHQKgbEz544ZN1fZQoaAZHQI+NwAGSpzdoB03oA2gIR0CoH2ujh1kldX2UKGgGR0CP2YanaWX1aAdN6ANoCEdAqCTN4qwyI3V9lChoBkdAkddSQo1DSmgHTegDaAhHQKglyDoQnQZ1fZQoaAZHQHolt5hScb1oB03oA2gIR0CoJttCAtnPdX2UKGgGR0CF5PkcS5AhaAdN6ANoCEdAqCtZZW7vonV9lChoBkdAkSKh0hePaWgHTegDaAhHQKgw2FfReC11fZQoaAZHQI+gtR3u/lBoB03oA2gIR0CoMcFfAsTWdX2UKGgGR0CUHlRp1zQvaAdN6ANoCEdAqDLLlT3qRnV9lChoBkdAiXTo1k1/D2gHTegDaAhHQKg3L/bTMJR1fZQoaAZHQJDdisHSncdoB03oA2gIR0CoPK5+YtxudX2UKGgGR0CQzXCLdepoaAdN6ANoCEdAqD2pIDoyK3V9lChoBkdAjg3zisGPgmgHTegDaAhHQKg+unQ6ZIB1fZQoaAZHQIiFgQHzH0doB03oA2gIR0CoQz8Zk079dX2UKGgGR0CPegdYGMXKaAdN6ANoCEdAqEjPq7iAD3V9lChoBkdAjxu371qWT2gHTegDaAhHQKhJx987ZFp1fZQoaAZHQJHKY6ZH/cZoB03oA2gIR0CoSuIJ7b+MdX2UKGgGR0CQi/w2l2vCaAdN6ANoCEdAqE9a0lZ5iXV9lChoBkdAkFcs23rleWgHTegDaAhHQKhU2uwHJLd1fZQoaAZHQJMsYXfqHGloB03oA2gIR0CoVc8c+7lJdX2UKGgGR0COH3hnanJlaAdN6ANoCEdAqFbpY9xIa3V9lChoBkdAibyOxB3RomgHTegDaAhHQKhbXM36yjZ1fZQoaAZHQJA/0YLsrupoB03oA2gIR0CoYNs5GSZCdX2UKGgGR0CPzay6+WWyaAdN6ANoCEdAqGHPp6hQFnV9lChoBkdAkv0GYfGMoGgHTegDaAhHQKhi57IDHOt1fZQoaAZHQJOtzn9vS+hoB03oA2gIR0CoZ1C0OVgQdX2UKGgGR0CUAXfwqiGnaAdN6ANoCEdAqGzF0A93bHV9lChoBkdAjtrDTa0x/WgHTegDaAhHQKhttTTfBN51fZQoaAZHQIjxj4WUKRdoB03oA2gIR0Cobs5+pfhNdX2UKGgGR0CKoU2UjcEeaAdN6ANoCEdAqHNNQ40dinV9lChoBkdAk2EBhDw6Q2gHTegDaAhHQKh488scyWR1fZQoaAZHQJOKAk3S8apoB03oA2gIR0CoeeTyauwHdX2UKGgGR0CGcEpON5t4aAdN6ANoCEdAqHsB6nivPnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62880, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (947 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1048.7986104412237, "std_reward": 251.17784658431273, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T16:55:13.936478"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f29795f5f0baaaceb3860cc54050edd3933fc5771330d12e577663d0d0eda579
3
+ size 2136