Upload 10 files
Browse files- .gitattributes +3 -0
- config_dereverb-echo_mel_band_roformer.yaml +77 -0
- dereverb-echo_mel_band_roformer_sdr_10.0169.ckpt +3 -0
- examples/README.md +5 -0
- examples/example_dry.wav +3 -0
- examples/example_other.wav +3 -0
- examples/example_raw.wav +3 -0
- scripts/create_reverb_delay.py +76 -0
- scripts/start_tensorboard.py +89 -0
- tensorboard.png +0 -0
- train.log +2431 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
examples/example_dry.wav filter=lfs diff=lfs merge=lfs -text
|
37 |
+
examples/example_other.wav filter=lfs diff=lfs merge=lfs -text
|
38 |
+
examples/example_raw.wav filter=lfs diff=lfs merge=lfs -text
|
config_dereverb-echo_mel_band_roformer.yaml
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
audio:
|
2 |
+
chunk_size: 352800
|
3 |
+
dim_f: 1024
|
4 |
+
dim_t: 801 # don't work (use in model)
|
5 |
+
hop_length: 441 # don't work (use in model)
|
6 |
+
n_fft: 2048
|
7 |
+
num_channels: 2
|
8 |
+
sample_rate: 44100
|
9 |
+
min_mean_abs: 0.000
|
10 |
+
|
11 |
+
model:
|
12 |
+
dim: 256
|
13 |
+
depth: 8
|
14 |
+
stereo: true
|
15 |
+
num_stems: 2
|
16 |
+
time_transformer_depth: 1
|
17 |
+
freq_transformer_depth: 1
|
18 |
+
linear_transformer_depth: 0
|
19 |
+
num_bands: 60
|
20 |
+
dim_head: 64
|
21 |
+
heads: 8
|
22 |
+
attn_dropout: 0.1
|
23 |
+
ff_dropout: 0.1
|
24 |
+
flash_attn: True
|
25 |
+
dim_freqs_in: 1025
|
26 |
+
sample_rate: 44100 # needed for mel filter bank from librosa
|
27 |
+
stft_n_fft: 2048
|
28 |
+
stft_hop_length: 441
|
29 |
+
stft_win_length: 2048
|
30 |
+
stft_normalized: False
|
31 |
+
mask_estimator_depth: 2
|
32 |
+
multi_stft_resolution_loss_weight: 1.0
|
33 |
+
multi_stft_resolutions_window_sizes: !!python/tuple
|
34 |
+
- 4096
|
35 |
+
- 2048
|
36 |
+
- 1024
|
37 |
+
- 512
|
38 |
+
- 256
|
39 |
+
multi_stft_hop_size: 147
|
40 |
+
multi_stft_normalized: False
|
41 |
+
|
42 |
+
training:
|
43 |
+
batch_size: 1
|
44 |
+
gradient_accumulation_steps: 8
|
45 |
+
grad_clip: 0
|
46 |
+
instruments:
|
47 |
+
- dry
|
48 |
+
- other
|
49 |
+
lr: 4.0e-05
|
50 |
+
patience: 2
|
51 |
+
reduce_factor: 0.95
|
52 |
+
target_instrument: null
|
53 |
+
num_epochs: 1000
|
54 |
+
num_steps: 1000
|
55 |
+
q: 0.95
|
56 |
+
coarse_loss_clip: true
|
57 |
+
ema_momentum: 0.999
|
58 |
+
optimizer: adam
|
59 |
+
other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental
|
60 |
+
use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true
|
61 |
+
|
62 |
+
augmentations:
|
63 |
+
enable: true # enable or disable all augmentations (to fast disable if needed)
|
64 |
+
loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max)
|
65 |
+
loudness_min: 0.5
|
66 |
+
loudness_max: 1.5
|
67 |
+
mixup: false # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3)
|
68 |
+
mixup_probs: !!python/tuple # 2 additional stems of the same type (1st with prob 0.2, 2nd with prob 0.02)
|
69 |
+
- 0.2
|
70 |
+
- 0.02
|
71 |
+
mixup_loudness_min: 0.5
|
72 |
+
mixup_loudness_max: 1.5
|
73 |
+
|
74 |
+
inference:
|
75 |
+
batch_size: 4
|
76 |
+
dim_t: 801
|
77 |
+
num_overlap: 4
|
dereverb-echo_mel_band_roformer_sdr_10.0169.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd2b737a394cfb80cd48cc9fcbaf89f5f4062f6b93066c2911617a06d8b7860a
|
3 |
+
size 835997896
|
examples/README.md
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
license: [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)
|
2 |
+
|
3 |
+
Example audios are from [TestableFred](https://space.bilibili.com/258080618)'s video: https://www.bilibili.com/video/BV1UZUpYGEwM
|
4 |
+
|
5 |
+
Before inputting it into the model for inference, the original audio was separated from the vocal and instrument using the `model_bs_roformer_ep_368_sdr_12.9628.ckpt` model.
|
examples/example_dry.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd4336e1aa539279591b8c59a4367cef6adc72a46c6356e93f8b572e80a0132c
|
3 |
+
size 3218824
|
examples/example_other.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb7f0787014754c0a08397ef6773143aa34653316276c51402b3fc442905eef0
|
3 |
+
size 3218824
|
examples/example_raw.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21d6b5f935dea3f3765539205e4fc5fd781fe17ed001b192ee45bf293771ab49
|
3 |
+
size 3508968
|
scripts/create_reverb_delay.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import librosa
|
4 |
+
import numpy as np
|
5 |
+
import soundfile as sf
|
6 |
+
from pedalboard import Pedalboard, Reverb, Delay, HighpassFilter, LowpassFilter
|
7 |
+
from random import uniform
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
|
11 |
+
def random_effect(audio, sr):
|
12 |
+
reverb = Pedalboard([
|
13 |
+
Delay(
|
14 |
+
delay_seconds=uniform(0.001, 0.100),
|
15 |
+
feedback=0.0,
|
16 |
+
mix=1.0
|
17 |
+
),
|
18 |
+
Reverb(
|
19 |
+
room_size=uniform(0.1, 0.8),
|
20 |
+
damping=uniform(0.1, 0.8),
|
21 |
+
wet_level=1.0,
|
22 |
+
dry_level=0.0,
|
23 |
+
width=uniform(0.6, 1.0)
|
24 |
+
),
|
25 |
+
HighpassFilter(cutoff_frequency_hz=uniform(100, 1000)),
|
26 |
+
LowpassFilter(cutoff_frequency_hz=uniform(4000, 12000))
|
27 |
+
])
|
28 |
+
|
29 |
+
delay = Pedalboard([
|
30 |
+
Delay(
|
31 |
+
delay_seconds=uniform(0.05, 0.500),
|
32 |
+
feedback=uniform(0.1, 0.5),
|
33 |
+
mix=1.0
|
34 |
+
),
|
35 |
+
Reverb(
|
36 |
+
room_size=uniform(0.05, 0.3),
|
37 |
+
damping=uniform(0.1, 0.8),
|
38 |
+
wet_level=0.2,
|
39 |
+
dry_level=0.8,
|
40 |
+
width=uniform(0.6, 1.0)
|
41 |
+
),
|
42 |
+
HighpassFilter(cutoff_frequency_hz=uniform(100, 1000)),
|
43 |
+
LowpassFilter(cutoff_frequency_hz=uniform(3000, 10000))
|
44 |
+
])
|
45 |
+
|
46 |
+
effect = uniform(0.1, 0.4) * reverb(audio, sr) + uniform(0.1, 0.4) * delay(audio, sr)
|
47 |
+
mix = effect + audio
|
48 |
+
|
49 |
+
return mix, effect
|
50 |
+
|
51 |
+
|
52 |
+
if __name__ == '__main__':
|
53 |
+
argparser = argparse.ArgumentParser(description='Add random reverb and delay effects to an audio file.')
|
54 |
+
argparser.add_argument('-i', '--input_folder', type=str, default="train", help='Path to the input audio file.')
|
55 |
+
argparser.add_argument('-o', '--output_folder', type=str, default="dataset_train", help='Path to the output audio file.')
|
56 |
+
args = argparser.parse_args()
|
57 |
+
|
58 |
+
index = 1
|
59 |
+
sr = 44100
|
60 |
+
for file in tqdm(os.listdir(args.input_folder)):
|
61 |
+
try:
|
62 |
+
audio, _ = librosa.load(os.path.join(args.input_folder, file), sr=sr)
|
63 |
+
if len(audio.shape) == 1:
|
64 |
+
audio = np.stack([audio, audio], axis=1)
|
65 |
+
effect = random_effect(audio.T, sr)
|
66 |
+
except:
|
67 |
+
print(f"Failed to process file: {file}")
|
68 |
+
continue
|
69 |
+
|
70 |
+
os.makedirs(os.path.join(args.output_folder, str(index)), exist_ok=True)
|
71 |
+
|
72 |
+
sf.write(os.path.join(args.output_folder, str(index), "mixture.wav"), effect[0].T, sr, subtype='PCM_16')
|
73 |
+
sf.write(os.path.join(args.output_folder, str(index), "other.wav"), effect[1].T, sr, subtype='PCM_16')
|
74 |
+
sf.write(os.path.join(args.output_folder, str(index), "dry.wav"), audio, sr, subtype='PCM_16')
|
75 |
+
|
76 |
+
index += 1
|
scripts/start_tensorboard.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
from tensorboardX import SummaryWriter
|
5 |
+
|
6 |
+
writer = SummaryWriter('runs/metrics_visualization')
|
7 |
+
|
8 |
+
epoch_pattern = re.compile(r'Train epoch: (\d+) Learning rate: ([\d.eE+-]+)')
|
9 |
+
training_loss_pattern = re.compile(r'Training loss: ([\d.]+)')
|
10 |
+
metric_pattern = re.compile(r'(\w+ \w+ \w+): ([\d.]+) \(Std: ([\d.]+)\)')
|
11 |
+
avg_metric_pattern = re.compile(r'Metric avg (\w+)\s+: ([\d.]+)')
|
12 |
+
|
13 |
+
data = {
|
14 |
+
'common': {
|
15 |
+
'learning_rate': [],
|
16 |
+
'training_loss': []
|
17 |
+
},
|
18 |
+
'dry': {
|
19 |
+
'Instr dry sdr': [],
|
20 |
+
'Instr dry l1_freq': [],
|
21 |
+
'Instr dry si_sdr': []
|
22 |
+
},
|
23 |
+
'other': {
|
24 |
+
'Instr other sdr': [],
|
25 |
+
'Instr other l1_freq': [],
|
26 |
+
'Instr other si_sdr': []
|
27 |
+
},
|
28 |
+
'avg': {
|
29 |
+
'Metric avg sdr': [],
|
30 |
+
'Metric avg l1_freq': [],
|
31 |
+
'Metric avg si_sdr': []
|
32 |
+
}
|
33 |
+
}
|
34 |
+
|
35 |
+
std_data = {
|
36 |
+
'dry': {key: [] for key in data['dry'].keys()},
|
37 |
+
'other': {key: [] for key in data['other'].keys()}
|
38 |
+
}
|
39 |
+
|
40 |
+
with open(r'E:\AI\datasets\msst\train.log', 'r') as f:
|
41 |
+
epoch = -1
|
42 |
+
for line in f:
|
43 |
+
epoch_match = epoch_pattern.match(line)
|
44 |
+
if epoch_match:
|
45 |
+
epoch = int(epoch_match.group(1))
|
46 |
+
learning_rate = float(epoch_match.group(2))
|
47 |
+
data['common']['learning_rate'].append((epoch, learning_rate))
|
48 |
+
continue
|
49 |
+
|
50 |
+
training_loss_match = training_loss_pattern.match(line)
|
51 |
+
if training_loss_match:
|
52 |
+
training_loss = float(training_loss_match.group(1))
|
53 |
+
data['common']['training_loss'].append((epoch, training_loss))
|
54 |
+
continue
|
55 |
+
|
56 |
+
metric_match = metric_pattern.match(line)
|
57 |
+
if metric_match:
|
58 |
+
metric_name = metric_match.group(1)
|
59 |
+
metric_value = float(metric_match.group(2))
|
60 |
+
std_value = float(metric_match.group(3))
|
61 |
+
|
62 |
+
if metric_name in data['dry']:
|
63 |
+
data['dry'][metric_name].append((epoch, metric_value))
|
64 |
+
std_data['dry'][metric_name].append((epoch, std_value))
|
65 |
+
elif metric_name in data['other']:
|
66 |
+
data['other'][metric_name].append((epoch, metric_value))
|
67 |
+
std_data['other'][metric_name].append((epoch, std_value))
|
68 |
+
continue
|
69 |
+
|
70 |
+
avg_metric_match = avg_metric_pattern.match(line)
|
71 |
+
if avg_metric_match:
|
72 |
+
avg_metric_name = f'Metric avg {avg_metric_match.group(1)}'
|
73 |
+
avg_metric_value = float(avg_metric_match.group(2))
|
74 |
+
data['avg'][avg_metric_name].append((epoch, avg_metric_value))
|
75 |
+
|
76 |
+
for category, metrics in data.items():
|
77 |
+
for key, values in metrics.items():
|
78 |
+
category_path = f'{category}/{key.replace(" ", "_").lower()}'
|
79 |
+
for epoch, value in values:
|
80 |
+
writer.add_scalar(f'{category_path}', value, epoch)
|
81 |
+
|
82 |
+
for category, metrics in std_data.items():
|
83 |
+
for key, values in metrics.items():
|
84 |
+
category_path = f'{category}/{key.replace(" ", "_").lower()}_std'
|
85 |
+
for epoch, std in values:
|
86 |
+
writer.add_scalar(f'{category_path}', std, epoch)
|
87 |
+
|
88 |
+
writer.close()
|
89 |
+
os.system('tensorboard --logdir=runs')
|
tensorboard.png
ADDED
train.log
ADDED
@@ -0,0 +1,2431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Train epoch: 0 Learning rate: 4e-05
|
2 |
+
Training loss: 0.112203
|
3 |
+
Instr dry sdr: 9.1842 (Std: 5.0694)
|
4 |
+
Instr dry l1_freq: 43.0502 (Std: 16.4433)
|
5 |
+
Instr dry si_sdr: 6.6879 (Std: 9.3848)
|
6 |
+
Instr other sdr: 2.7113 (Std: 2.9820)
|
7 |
+
Instr other l1_freq: 42.2600 (Std: 13.8038)
|
8 |
+
Instr other si_sdr: 0.9734 (Std: 2.9438)
|
9 |
+
Metric avg sdr : 5.9478
|
10 |
+
Metric avg l1_freq : 42.6551
|
11 |
+
Metric avg si_sdr : 3.8307
|
12 |
+
Train epoch: 1 Learning rate: 4e-05
|
13 |
+
Training loss: 0.108346
|
14 |
+
Instr dry sdr: 9.8077 (Std: 5.0427)
|
15 |
+
Instr dry l1_freq: 45.2016 (Std: 16.0011)
|
16 |
+
Instr dry si_sdr: 7.8796 (Std: 8.4374)
|
17 |
+
Instr other sdr: 3.2853 (Std: 3.0210)
|
18 |
+
Instr other l1_freq: 44.2322 (Std: 13.4866)
|
19 |
+
Instr other si_sdr: 1.6467 (Std: 3.0609)
|
20 |
+
Metric avg sdr : 6.5465
|
21 |
+
Metric avg l1_freq : 44.7169
|
22 |
+
Metric avg si_sdr : 4.7632
|
23 |
+
Train epoch: 2 Learning rate: 4e-05
|
24 |
+
Training loss: 0.111557
|
25 |
+
Instr dry sdr: 8.6600 (Std: 5.2673)
|
26 |
+
Instr dry l1_freq: 40.4967 (Std: 16.3782)
|
27 |
+
Instr dry si_sdr: 5.1406 (Std: 11.2339)
|
28 |
+
Instr other sdr: 2.2686 (Std: 3.3155)
|
29 |
+
Instr other l1_freq: 40.7998 (Std: 14.0537)
|
30 |
+
Instr other si_sdr: 0.5386 (Std: 3.2345)
|
31 |
+
Metric avg sdr : 5.4643
|
32 |
+
Metric avg l1_freq : 40.6482
|
33 |
+
Metric avg si_sdr : 2.8396
|
34 |
+
Train epoch: 3 Learning rate: 4e-05
|
35 |
+
Training loss: 0.104671
|
36 |
+
Instr dry sdr: 10.5112 (Std: 4.7450)
|
37 |
+
Instr dry l1_freq: 47.0243 (Std: 15.3385)
|
38 |
+
Instr dry si_sdr: 9.2583 (Std: 7.0059)
|
39 |
+
Instr other sdr: 3.9533 (Std: 2.9623)
|
40 |
+
Instr other l1_freq: 45.7660 (Std: 13.4354)
|
41 |
+
Instr other si_sdr: 2.4055 (Std: 3.0344)
|
42 |
+
Metric avg sdr : 7.2322
|
43 |
+
Metric avg l1_freq : 46.3951
|
44 |
+
Metric avg si_sdr : 5.8319
|
45 |
+
Train epoch: 4 Learning rate: 4e-05
|
46 |
+
Training loss: 0.108527
|
47 |
+
Instr dry sdr: 10.6624 (Std: 4.7885)
|
48 |
+
Instr dry l1_freq: 47.5591 (Std: 15.3929)
|
49 |
+
Instr dry si_sdr: 9.3465 (Std: 7.2948)
|
50 |
+
Instr other sdr: 4.1154 (Std: 3.0104)
|
51 |
+
Instr other l1_freq: 45.9004 (Std: 13.4133)
|
52 |
+
Instr other si_sdr: 2.6202 (Std: 3.0885)
|
53 |
+
Metric avg sdr : 7.3889
|
54 |
+
Metric avg l1_freq : 46.7298
|
55 |
+
Metric avg si_sdr : 5.9833
|
56 |
+
Train epoch: 5 Learning rate: 4e-05
|
57 |
+
Training loss: 0.107057
|
58 |
+
Instr dry sdr: 11.0292 (Std: 4.6336)
|
59 |
+
Instr dry l1_freq: 48.4740 (Std: 15.0574)
|
60 |
+
Instr dry si_sdr: 9.9518 (Std: 6.6424)
|
61 |
+
Instr other sdr: 4.4880 (Std: 2.9169)
|
62 |
+
Instr other l1_freq: 46.8940 (Std: 13.1882)
|
63 |
+
Instr other si_sdr: 3.0556 (Std: 3.0106)
|
64 |
+
Metric avg sdr : 7.7586
|
65 |
+
Metric avg l1_freq : 47.6840
|
66 |
+
Metric avg si_sdr : 6.5037
|
67 |
+
Train epoch: 6 Learning rate: 4e-05
|
68 |
+
Training loss: 0.102628
|
69 |
+
Instr dry sdr: 10.4956 (Std: 5.0565)
|
70 |
+
Instr dry l1_freq: 47.0258 (Std: 15.6716)
|
71 |
+
Instr dry si_sdr: 8.7730 (Std: 8.3461)
|
72 |
+
Instr other sdr: 4.0236 (Std: 3.1916)
|
73 |
+
Instr other l1_freq: 45.9433 (Std: 13.4968)
|
74 |
+
Instr other si_sdr: 2.6168 (Std: 3.2038)
|
75 |
+
Metric avg sdr : 7.2596
|
76 |
+
Metric avg l1_freq : 46.4846
|
77 |
+
Metric avg si_sdr : 5.6949
|
78 |
+
Train epoch: 7 Learning rate: 4e-05
|
79 |
+
Training loss: 0.102433
|
80 |
+
Instr dry sdr: 10.4234 (Std: 5.2507)
|
81 |
+
Instr dry l1_freq: 46.5551 (Std: 16.1208)
|
82 |
+
Instr dry si_sdr: 8.2495 (Std: 9.4586)
|
83 |
+
Instr other sdr: 3.9662 (Std: 3.3640)
|
84 |
+
Instr other l1_freq: 45.5177 (Std: 13.8393)
|
85 |
+
Instr other si_sdr: 2.6240 (Std: 3.3432)
|
86 |
+
Metric avg sdr : 7.1948
|
87 |
+
Metric avg l1_freq : 46.0364
|
88 |
+
Metric avg si_sdr : 5.4368
|
89 |
+
Train epoch: 8 Learning rate: 4e-05
|
90 |
+
Training loss: 0.102206
|
91 |
+
Instr dry sdr: 11.2823 (Std: 4.6485)
|
92 |
+
Instr dry l1_freq: 49.1632 (Std: 14.9530)
|
93 |
+
Instr dry si_sdr: 10.2208 (Std: 6.6984)
|
94 |
+
Instr other sdr: 4.7831 (Std: 2.9732)
|
95 |
+
Instr other l1_freq: 47.7291 (Std: 13.1676)
|
96 |
+
Instr other si_sdr: 3.4409 (Std: 3.0674)
|
97 |
+
Metric avg sdr : 8.0327
|
98 |
+
Metric avg l1_freq : 48.4461
|
99 |
+
Metric avg si_sdr : 6.8308
|
100 |
+
Train epoch: 9 Learning rate: 4e-05
|
101 |
+
Training loss: 0.102105
|
102 |
+
Instr dry sdr: 9.8860 (Std: 5.7882)
|
103 |
+
Instr dry l1_freq: 44.9209 (Std: 17.4682)
|
104 |
+
Instr dry si_sdr: 6.8763 (Std: 10.9794)
|
105 |
+
Instr other sdr: 3.4941 (Std: 3.7512)
|
106 |
+
Instr other l1_freq: 44.9048 (Std: 14.8870)
|
107 |
+
Instr other si_sdr: 2.3025 (Std: 3.5580)
|
108 |
+
Metric avg sdr : 6.6900
|
109 |
+
Metric avg l1_freq : 44.9128
|
110 |
+
Metric avg si_sdr : 4.5894
|
111 |
+
Train epoch: 10 Learning rate: 4e-05
|
112 |
+
Training loss: 0.105466
|
113 |
+
Instr dry sdr: 10.6825 (Std: 5.4309)
|
114 |
+
Instr dry l1_freq: 47.1887 (Std: 16.3474)
|
115 |
+
Instr dry si_sdr: 8.5463 (Std: 9.5558)
|
116 |
+
Instr other sdr: 4.2599 (Std: 3.5437)
|
117 |
+
Instr other l1_freq: 46.4425 (Std: 13.9931)
|
118 |
+
Instr other si_sdr: 3.0562 (Std: 3.5099)
|
119 |
+
Metric avg sdr : 7.4712
|
120 |
+
Metric avg l1_freq : 46.8156
|
121 |
+
Metric avg si_sdr : 5.8013
|
122 |
+
Train epoch: 11 Learning rate: 4e-05
|
123 |
+
Training loss: 0.102414
|
124 |
+
Instr dry sdr: 9.6486 (Std: 5.9472)
|
125 |
+
Instr dry l1_freq: 44.1544 (Std: 18.0469)
|
126 |
+
Instr dry si_sdr: 6.1325 (Std: 11.8517)
|
127 |
+
Instr other sdr: 3.3058 (Std: 3.8984)
|
128 |
+
Instr other l1_freq: 43.9748 (Std: 15.1864)
|
129 |
+
Instr other si_sdr: 2.1583 (Std: 3.6656)
|
130 |
+
Metric avg sdr : 6.4772
|
131 |
+
Metric avg l1_freq : 44.0646
|
132 |
+
Metric avg si_sdr : 4.1454
|
133 |
+
Train epoch: 12 Learning rate: 3.8e-05
|
134 |
+
Training loss: 0.102746
|
135 |
+
Instr dry sdr: 11.2203 (Std: 4.7064)
|
136 |
+
Instr dry l1_freq: 49.1167 (Std: 15.4703)
|
137 |
+
Instr dry si_sdr: 9.9747 (Std: 7.3762)
|
138 |
+
Instr other sdr: 4.8413 (Std: 3.0495)
|
139 |
+
Instr other l1_freq: 47.1270 (Std: 13.4432)
|
140 |
+
Instr other si_sdr: 3.5202 (Std: 3.1601)
|
141 |
+
Metric avg sdr : 8.0308
|
142 |
+
Metric avg l1_freq : 48.1219
|
143 |
+
Metric avg si_sdr : 6.7475
|
144 |
+
Train epoch: 13 Learning rate: 3.8e-05
|
145 |
+
Training loss: 0.098055
|
146 |
+
Instr dry sdr: 11.4479 (Std: 4.6584)
|
147 |
+
Instr dry l1_freq: 49.8237 (Std: 15.2150)
|
148 |
+
Instr dry si_sdr: 10.2828 (Std: 7.2318)
|
149 |
+
Instr other sdr: 5.0567 (Std: 3.0666)
|
150 |
+
Instr other l1_freq: 47.9391 (Std: 13.2528)
|
151 |
+
Instr other si_sdr: 3.8100 (Std: 3.1556)
|
152 |
+
Metric avg sdr : 8.2523
|
153 |
+
Metric avg l1_freq : 48.8814
|
154 |
+
Metric avg si_sdr : 7.0464
|
155 |
+
Train epoch: 14 Learning rate: 3.8e-05
|
156 |
+
Training loss: 0.098851
|
157 |
+
Instr dry sdr: 11.2437 (Std: 4.4635)
|
158 |
+
Instr dry l1_freq: 48.9190 (Std: 14.9174)
|
159 |
+
Instr dry si_sdr: 10.0969 (Std: 7.1745)
|
160 |
+
Instr other sdr: 4.8748 (Std: 2.9083)
|
161 |
+
Instr other l1_freq: 47.2522 (Std: 13.2537)
|
162 |
+
Instr other si_sdr: 3.4444 (Std: 3.1525)
|
163 |
+
Metric avg sdr : 8.0592
|
164 |
+
Metric avg l1_freq : 48.0856
|
165 |
+
Metric avg si_sdr : 6.7706
|
166 |
+
Train epoch: 15 Learning rate: 3.8e-05
|
167 |
+
Training loss: 0.100223
|
168 |
+
Instr dry sdr: 11.8901 (Std: 3.8317)
|
169 |
+
Instr dry l1_freq: 51.2161 (Std: 12.9691)
|
170 |
+
Instr dry si_sdr: 11.2922 (Std: 5.1277)
|
171 |
+
Instr other sdr: 5.5019 (Std: 2.2995)
|
172 |
+
Instr other l1_freq: 48.7933 (Std: 11.9829)
|
173 |
+
Instr other si_sdr: 4.1441 (Std: 2.6947)
|
174 |
+
Metric avg sdr : 8.6960
|
175 |
+
Metric avg l1_freq : 50.0047
|
176 |
+
Metric avg si_sdr : 7.7181
|
177 |
+
Train epoch: 16 Learning rate: 3.8e-05
|
178 |
+
Training loss: 0.104321
|
179 |
+
Instr dry sdr: 11.9911 (Std: 3.9050)
|
180 |
+
Instr dry l1_freq: 51.5090 (Std: 13.0993)
|
181 |
+
Instr dry si_sdr: 11.3194 (Std: 5.4409)
|
182 |
+
Instr other sdr: 5.5892 (Std: 2.4072)
|
183 |
+
Instr other l1_freq: 49.2916 (Std: 11.9865)
|
184 |
+
Instr other si_sdr: 4.2758 (Std: 2.7573)
|
185 |
+
Metric avg sdr : 8.7901
|
186 |
+
Metric avg l1_freq : 50.4003
|
187 |
+
Metric avg si_sdr : 7.7976
|
188 |
+
Train epoch: 17 Learning rate: 3.8e-05
|
189 |
+
Training loss: 0.101089
|
190 |
+
Instr dry sdr: 11.3998 (Std: 4.4243)
|
191 |
+
Instr dry l1_freq: 49.5020 (Std: 14.6672)
|
192 |
+
Instr dry si_sdr: 10.2264 (Std: 7.2563)
|
193 |
+
Instr other sdr: 5.0164 (Std: 2.9508)
|
194 |
+
Instr other l1_freq: 47.8112 (Std: 13.1082)
|
195 |
+
Instr other si_sdr: 3.6554 (Std: 3.1220)
|
196 |
+
Metric avg sdr : 8.2081
|
197 |
+
Metric avg l1_freq : 48.6566
|
198 |
+
Metric avg si_sdr : 6.9409
|
199 |
+
Train epoch: 18 Learning rate: 3.8e-05
|
200 |
+
Training loss: 0.104896
|
201 |
+
Instr dry sdr: 11.8436 (Std: 4.2132)
|
202 |
+
Instr dry l1_freq: 50.8741 (Std: 13.9037)
|
203 |
+
Instr dry si_sdr: 10.9560 (Std: 6.3993)
|
204 |
+
Instr other sdr: 5.4496 (Std: 2.7765)
|
205 |
+
Instr other l1_freq: 49.0518 (Std: 12.5874)
|
206 |
+
Instr other si_sdr: 4.1728 (Std: 2.9902)
|
207 |
+
Metric avg sdr : 8.6466
|
208 |
+
Metric avg l1_freq : 49.9630
|
209 |
+
Metric avg si_sdr : 7.5644
|
210 |
+
Train epoch: 19 Learning rate: 3.8e-05
|
211 |
+
Training loss: 0.102872
|
212 |
+
Instr dry sdr: 11.6119 (Std: 4.4405)
|
213 |
+
Instr dry l1_freq: 50.0832 (Std: 14.4807)
|
214 |
+
Instr dry si_sdr: 10.3961 (Std: 7.4146)
|
215 |
+
Instr other sdr: 5.2438 (Std: 2.9718)
|
216 |
+
Instr other l1_freq: 48.5173 (Std: 12.9634)
|
217 |
+
Instr other si_sdr: 3.9460 (Std: 3.1250)
|
218 |
+
Metric avg sdr : 8.4278
|
219 |
+
Metric avg l1_freq : 49.3003
|
220 |
+
Metric avg si_sdr : 7.1711
|
221 |
+
Train epoch: 20 Learning rate: 3.61e-05
|
222 |
+
Training loss: 0.103917
|
223 |
+
Instr dry sdr: 11.8600 (Std: 4.3186)
|
224 |
+
Instr dry l1_freq: 50.7067 (Std: 14.1043)
|
225 |
+
Instr dry si_sdr: 10.8580 (Std: 6.8196)
|
226 |
+
Instr other sdr: 5.4763 (Std: 2.8551)
|
227 |
+
Instr other l1_freq: 49.0513 (Std: 12.7018)
|
228 |
+
Instr other si_sdr: 4.2312 (Std: 3.0315)
|
229 |
+
Metric avg sdr : 8.6681
|
230 |
+
Metric avg l1_freq : 49.8790
|
231 |
+
Metric avg si_sdr : 7.5446
|
232 |
+
Train epoch: 21 Learning rate: 3.61e-05
|
233 |
+
Training loss: 0.099953
|
234 |
+
Instr dry sdr: 11.6488 (Std: 4.4892)
|
235 |
+
Instr dry l1_freq: 50.1608 (Std: 14.5906)
|
236 |
+
Instr dry si_sdr: 10.4241 (Std: 7.4959)
|
237 |
+
Instr other sdr: 5.2680 (Std: 2.9869)
|
238 |
+
Instr other l1_freq: 48.7911 (Std: 12.9553)
|
239 |
+
Instr other si_sdr: 3.9999 (Std: 3.1246)
|
240 |
+
Metric avg sdr : 8.4584
|
241 |
+
Metric avg l1_freq : 49.4760
|
242 |
+
Metric avg si_sdr : 7.2120
|
243 |
+
Train epoch: 22 Learning rate: 3.61e-05
|
244 |
+
Training loss: 0.106623
|
245 |
+
Instr dry sdr: 11.4431 (Std: 4.5723)
|
246 |
+
Instr dry l1_freq: 49.5066 (Std: 14.8685)
|
247 |
+
Instr dry si_sdr: 10.0020 (Std: 8.1887)
|
248 |
+
Instr other sdr: 5.0968 (Std: 3.0595)
|
249 |
+
Instr other l1_freq: 48.0954 (Std: 13.1793)
|
250 |
+
Instr other si_sdr: 3.8148 (Std: 3.1874)
|
251 |
+
Metric avg sdr : 8.2699
|
252 |
+
Metric avg l1_freq : 48.8010
|
253 |
+
Metric avg si_sdr : 6.9084
|
254 |
+
Train epoch: 23 Learning rate: 3.4295e-05
|
255 |
+
Training loss: 0.102432
|
256 |
+
Instr dry sdr: 11.7803 (Std: 4.5411)
|
257 |
+
Instr dry l1_freq: 50.1692 (Std: 14.6833)
|
258 |
+
Instr dry si_sdr: 10.4433 (Std: 7.9273)
|
259 |
+
Instr other sdr: 5.4089 (Std: 3.0554)
|
260 |
+
Instr other l1_freq: 48.6791 (Std: 13.1322)
|
261 |
+
Instr other si_sdr: 4.2015 (Std: 3.1739)
|
262 |
+
Metric avg sdr : 8.5946
|
263 |
+
Metric avg l1_freq : 49.4242
|
264 |
+
Metric avg si_sdr : 7.3224
|
265 |
+
Train epoch: 24 Learning rate: 3.4295e-05
|
266 |
+
Training loss: 0.099989
|
267 |
+
Instr dry sdr: 11.8416 (Std: 4.5566)
|
268 |
+
Instr dry l1_freq: 50.3986 (Std: 14.6825)
|
269 |
+
Instr dry si_sdr: 10.4740 (Std: 8.0559)
|
270 |
+
Instr other sdr: 5.4663 (Std: 3.0807)
|
271 |
+
Instr other l1_freq: 49.1233 (Std: 13.1509)
|
272 |
+
Instr other si_sdr: 4.2740 (Std: 3.1957)
|
273 |
+
Metric avg sdr : 8.6540
|
274 |
+
Metric avg l1_freq : 49.7609
|
275 |
+
Metric avg si_sdr : 7.3740
|
276 |
+
Train epoch: 25 Learning rate: 3.4295e-05
|
277 |
+
Training loss: 0.098635
|
278 |
+
Instr dry sdr: 11.9577 (Std: 4.5334)
|
279 |
+
Instr dry l1_freq: 51.0521 (Std: 14.5271)
|
280 |
+
Instr dry si_sdr: 10.8045 (Std: 7.3315)
|
281 |
+
Instr other sdr: 5.5823 (Std: 3.0608)
|
282 |
+
Instr other l1_freq: 49.4446 (Std: 12.9467)
|
283 |
+
Instr other si_sdr: 4.4169 (Std: 3.1841)
|
284 |
+
Metric avg sdr : 8.7700
|
285 |
+
Metric avg l1_freq : 50.2483
|
286 |
+
Metric avg si_sdr : 7.6107
|
287 |
+
Train epoch: 26 Learning rate: 3.258025e-05
|
288 |
+
Training loss: 0.099137
|
289 |
+
Instr dry sdr: 11.9302 (Std: 4.6017)
|
290 |
+
Instr dry l1_freq: 50.8494 (Std: 14.8073)
|
291 |
+
Instr dry si_sdr: 10.5274 (Std: 8.1764)
|
292 |
+
Instr other sdr: 5.5601 (Std: 3.1095)
|
293 |
+
Instr other l1_freq: 49.3405 (Std: 13.1348)
|
294 |
+
Instr other si_sdr: 4.4060 (Std: 3.2139)
|
295 |
+
Metric avg sdr : 8.7451
|
296 |
+
Metric avg l1_freq : 50.0949
|
297 |
+
Metric avg si_sdr : 7.4667
|
298 |
+
Train epoch: 27 Learning rate: 3.258025e-05
|
299 |
+
Training loss: 0.097129
|
300 |
+
Instr dry sdr: 11.8247 (Std: 4.5460)
|
301 |
+
Instr dry l1_freq: 50.5849 (Std: 14.6852)
|
302 |
+
Instr dry si_sdr: 10.4771 (Std: 7.9980)
|
303 |
+
Instr other sdr: 5.4648 (Std: 3.0762)
|
304 |
+
Instr other l1_freq: 48.8602 (Std: 13.0388)
|
305 |
+
Instr other si_sdr: 4.2713 (Std: 3.1981)
|
306 |
+
Metric avg sdr : 8.6448
|
307 |
+
Metric avg l1_freq : 49.7225
|
308 |
+
Metric avg si_sdr : 7.3742
|
309 |
+
Train epoch: 28 Learning rate: 3.258025e-05
|
310 |
+
Training loss: 0.099773
|
311 |
+
Instr dry sdr: 11.9798 (Std: 4.5750)
|
312 |
+
Instr dry l1_freq: 51.0790 (Std: 14.6501)
|
313 |
+
Instr dry si_sdr: 10.6954 (Std: 7.7941)
|
314 |
+
Instr other sdr: 5.6008 (Std: 3.0957)
|
315 |
+
Instr other l1_freq: 49.4151 (Std: 13.0527)
|
316 |
+
Instr other si_sdr: 4.4569 (Std: 3.1976)
|
317 |
+
Metric avg sdr : 8.7903
|
318 |
+
Metric avg l1_freq : 50.2470
|
319 |
+
Metric avg si_sdr : 7.5762
|
320 |
+
Train epoch: 29 Learning rate: 3.09512375e-05
|
321 |
+
Training loss: 0.099705
|
322 |
+
Instr dry sdr: 11.9371 (Std: 4.6418)
|
323 |
+
Instr dry l1_freq: 51.0463 (Std: 14.8174)
|
324 |
+
Instr dry si_sdr: 10.5877 (Std: 7.9657)
|
325 |
+
Instr other sdr: 5.5785 (Std: 3.1468)
|
326 |
+
Instr other l1_freq: 49.4233 (Std: 13.1175)
|
327 |
+
Instr other si_sdr: 4.4452 (Std: 3.2448)
|
328 |
+
Metric avg sdr : 8.7578
|
329 |
+
Metric avg l1_freq : 50.2348
|
330 |
+
Metric avg si_sdr : 7.5165
|
331 |
+
Train epoch: 30 Learning rate: 3.09512375e-05
|
332 |
+
Training loss: 0.101415
|
333 |
+
Instr dry sdr: 12.1884 (Std: 4.4321)
|
334 |
+
Instr dry l1_freq: 51.4162 (Std: 14.2252)
|
335 |
+
Instr dry si_sdr: 11.1747 (Std: 6.8448)
|
336 |
+
Instr other sdr: 5.8140 (Std: 3.0305)
|
337 |
+
Instr other l1_freq: 50.1628 (Std: 12.9061)
|
338 |
+
Instr other si_sdr: 4.6854 (Std: 3.1503)
|
339 |
+
Metric avg sdr : 9.0012
|
340 |
+
Metric avg l1_freq : 50.7895
|
341 |
+
Metric avg si_sdr : 7.9300
|
342 |
+
Train epoch: 31 Learning rate: 3.09512375e-05
|
343 |
+
Training loss: 0.102380
|
344 |
+
Instr dry sdr: 12.2048 (Std: 4.4409)
|
345 |
+
Instr dry l1_freq: 51.5894 (Std: 14.3102)
|
346 |
+
Instr dry si_sdr: 11.1695 (Std: 7.0154)
|
347 |
+
Instr other sdr: 5.8346 (Std: 3.0329)
|
348 |
+
Instr other l1_freq: 50.0733 (Std: 12.9218)
|
349 |
+
Instr other si_sdr: 4.7251 (Std: 3.1519)
|
350 |
+
Metric avg sdr : 9.0197
|
351 |
+
Metric avg l1_freq : 50.8314
|
352 |
+
Metric avg si_sdr : 7.9473
|
353 |
+
Train epoch: 32 Learning rate: 3.09512375e-05
|
354 |
+
Training loss: 0.101785
|
355 |
+
Instr dry sdr: 12.1684 (Std: 4.5522)
|
356 |
+
Instr dry l1_freq: 51.4581 (Std: 14.5296)
|
357 |
+
Instr dry si_sdr: 11.0002 (Std: 7.4294)
|
358 |
+
Instr other sdr: 5.8010 (Std: 3.0979)
|
359 |
+
Instr other l1_freq: 49.9899 (Std: 13.0052)
|
360 |
+
Instr other si_sdr: 4.7016 (Std: 3.2061)
|
361 |
+
Metric avg sdr : 8.9847
|
362 |
+
Metric avg l1_freq : 50.7240
|
363 |
+
Metric avg si_sdr : 7.8509
|
364 |
+
Train epoch: 33 Learning rate: 3.09512375e-05
|
365 |
+
Training loss: 0.100284
|
366 |
+
Instr dry sdr: 11.9117 (Std: 4.7139)
|
367 |
+
Instr dry l1_freq: 50.5437 (Std: 14.9248)
|
368 |
+
Instr dry si_sdr: 10.4955 (Std: 8.2177)
|
369 |
+
Instr other sdr: 5.5665 (Std: 3.1587)
|
370 |
+
Instr other l1_freq: 49.5938 (Std: 13.3054)
|
371 |
+
Instr other si_sdr: 4.4402 (Std: 3.2527)
|
372 |
+
Metric avg sdr : 8.7391
|
373 |
+
Metric avg l1_freq : 50.0688
|
374 |
+
Metric avg si_sdr : 7.4679
|
375 |
+
Train epoch: 34 Learning rate: 3.09512375e-05
|
376 |
+
Training loss: 0.098834
|
377 |
+
Instr dry sdr: 11.8616 (Std: 4.6685)
|
378 |
+
Instr dry l1_freq: 50.6035 (Std: 14.8479)
|
379 |
+
Instr dry si_sdr: 10.4479 (Std: 8.1880)
|
380 |
+
Instr other sdr: 5.5394 (Std: 3.1456)
|
381 |
+
Instr other l1_freq: 49.5593 (Std: 13.2399)
|
382 |
+
Instr other si_sdr: 4.3980 (Std: 3.2515)
|
383 |
+
Metric avg sdr : 8.7005
|
384 |
+
Metric avg l1_freq : 50.0814
|
385 |
+
Metric avg si_sdr : 7.4229
|
386 |
+
Train epoch: 35 Learning rate: 2.9403675625e-05
|
387 |
+
Training loss: 0.103044
|
388 |
+
Instr dry sdr: 12.0009 (Std: 4.6071)
|
389 |
+
Instr dry l1_freq: 51.2387 (Std: 14.6381)
|
390 |
+
Instr dry si_sdr: 10.7337 (Std: 7.7206)
|
391 |
+
Instr other sdr: 5.6760 (Std: 3.1386)
|
392 |
+
Instr other l1_freq: 49.7333 (Std: 13.0192)
|
393 |
+
Instr other si_sdr: 4.5561 (Std: 3.2552)
|
394 |
+
Metric avg sdr : 8.8384
|
395 |
+
Metric avg l1_freq : 50.4860
|
396 |
+
Metric avg si_sdr : 7.6449
|
397 |
+
Train epoch: 36 Learning rate: 2.9403675625e-05
|
398 |
+
Training loss: 0.095640
|
399 |
+
Instr dry sdr: 12.1978 (Std: 4.6388)
|
400 |
+
Instr dry l1_freq: 51.5424 (Std: 14.6671)
|
401 |
+
Instr dry si_sdr: 10.9504 (Std: 7.7064)
|
402 |
+
Instr other sdr: 5.8538 (Std: 3.1690)
|
403 |
+
Instr other l1_freq: 50.2770 (Std: 13.1821)
|
404 |
+
Instr other si_sdr: 4.7852 (Std: 3.2577)
|
405 |
+
Metric avg sdr : 9.0258
|
406 |
+
Metric avg l1_freq : 50.9097
|
407 |
+
Metric avg si_sdr : 7.8678
|
408 |
+
Train epoch: 37 Learning rate: 2.9403675625e-05
|
409 |
+
Training loss: 0.097300
|
410 |
+
Instr dry sdr: 12.1350 (Std: 4.7538)
|
411 |
+
Instr dry l1_freq: 51.1537 (Std: 14.8995)
|
412 |
+
Instr dry si_sdr: 10.6954 (Std: 8.3349)
|
413 |
+
Instr other sdr: 5.7904 (Std: 3.2381)
|
414 |
+
Instr other l1_freq: 50.0719 (Std: 13.2881)
|
415 |
+
Instr other si_sdr: 4.7196 (Std: 3.3284)
|
416 |
+
Metric avg sdr : 8.9627
|
417 |
+
Metric avg l1_freq : 50.6128
|
418 |
+
Metric avg si_sdr : 7.7075
|
419 |
+
Train epoch: 38 Learning rate: 2.9403675625e-05
|
420 |
+
Training loss: 0.097327
|
421 |
+
Instr dry sdr: 12.0688 (Std: 4.8227)
|
422 |
+
Instr dry l1_freq: 50.9813 (Std: 15.0747)
|
423 |
+
Instr dry si_sdr: 10.5224 (Std: 8.6736)
|
424 |
+
Instr other sdr: 5.7242 (Std: 3.2753)
|
425 |
+
Instr other l1_freq: 50.0266 (Std: 13.4201)
|
426 |
+
Instr other si_sdr: 4.6608 (Std: 3.3507)
|
427 |
+
Metric avg sdr : 8.8965
|
428 |
+
Metric avg l1_freq : 50.5040
|
429 |
+
Metric avg si_sdr : 7.5916
|
430 |
+
Train epoch: 39 Learning rate: 2.9403675625e-05
|
431 |
+
Training loss: 0.100668
|
432 |
+
Instr dry sdr: 11.8969 (Std: 4.8789)
|
433 |
+
Instr dry l1_freq: 50.1775 (Std: 15.0496)
|
434 |
+
Instr dry si_sdr: 10.4221 (Std: 8.4724)
|
435 |
+
Instr other sdr: 5.5662 (Std: 3.2807)
|
436 |
+
Instr other l1_freq: 49.3151 (Std: 13.3768)
|
437 |
+
Instr other si_sdr: 4.4702 (Std: 3.3781)
|
438 |
+
Metric avg sdr : 8.7316
|
439 |
+
Metric avg l1_freq : 49.7463
|
440 |
+
Metric avg si_sdr : 7.4462
|
441 |
+
Train epoch: 40 Learning rate: 2.7933491843749998e-05
|
442 |
+
Training loss: 0.096047
|
443 |
+
Instr dry sdr: 11.7411 (Std: 5.1290)
|
444 |
+
Instr dry l1_freq: 49.9637 (Std: 15.4402)
|
445 |
+
Instr dry si_sdr: 10.1175 (Std: 8.8404)
|
446 |
+
Instr other sdr: 5.4359 (Std: 3.4525)
|
447 |
+
Instr other l1_freq: 49.2590 (Std: 13.6127)
|
448 |
+
Instr other si_sdr: 4.3865 (Std: 3.5094)
|
449 |
+
Metric avg sdr : 8.5885
|
450 |
+
Metric avg l1_freq : 49.6114
|
451 |
+
Metric avg si_sdr : 7.2520
|
452 |
+
Train epoch: 41 Learning rate: 2.7933491843749998e-05
|
453 |
+
Training loss: 0.095904
|
454 |
+
Instr dry sdr: 12.2122 (Std: 4.6289)
|
455 |
+
Instr dry l1_freq: 51.6605 (Std: 14.6610)
|
456 |
+
Instr dry si_sdr: 11.2688 (Std: 6.6841)
|
457 |
+
Instr other sdr: 5.8853 (Std: 3.1060)
|
458 |
+
Instr other l1_freq: 50.0406 (Std: 13.1129)
|
459 |
+
Instr other si_sdr: 4.8181 (Std: 3.2378)
|
460 |
+
Metric avg sdr : 9.0487
|
461 |
+
Metric avg l1_freq : 50.8506
|
462 |
+
Metric avg si_sdr : 8.0434
|
463 |
+
Train epoch: 42 Learning rate: 2.7933491843749998e-05
|
464 |
+
Training loss: 0.100599
|
465 |
+
Instr dry sdr: 12.1917 (Std: 4.6540)
|
466 |
+
Instr dry l1_freq: 51.6310 (Std: 14.7739)
|
467 |
+
Instr dry si_sdr: 11.0723 (Std: 7.3049)
|
468 |
+
Instr other sdr: 5.8670 (Std: 3.1752)
|
469 |
+
Instr other l1_freq: 50.0911 (Std: 13.2149)
|
470 |
+
Instr other si_sdr: 4.8079 (Std: 3.2820)
|
471 |
+
Metric avg sdr : 9.0293
|
472 |
+
Metric avg l1_freq : 50.8610
|
473 |
+
Metric avg si_sdr : 7.9401
|
474 |
+
Train epoch: 43 Learning rate: 2.7933491843749998e-05
|
475 |
+
Training loss: 0.098432
|
476 |
+
Instr dry sdr: 12.2574 (Std: 4.6928)
|
477 |
+
Instr dry l1_freq: 51.7157 (Std: 14.8442)
|
478 |
+
Instr dry si_sdr: 11.0937 (Std: 7.4824)
|
479 |
+
Instr other sdr: 5.9243 (Std: 3.2065)
|
480 |
+
Instr other l1_freq: 50.3579 (Std: 13.3033)
|
481 |
+
Instr other si_sdr: 4.8882 (Std: 3.3074)
|
482 |
+
Metric avg sdr : 9.0909
|
483 |
+
Metric avg l1_freq : 51.0368
|
484 |
+
Metric avg si_sdr : 7.9909
|
485 |
+
Train epoch: 44 Learning rate: 2.7933491843749998e-05
|
486 |
+
Training loss: 0.099358
|
487 |
+
Instr dry sdr: 12.1303 (Std: 4.8594)
|
488 |
+
Instr dry l1_freq: 51.3296 (Std: 15.1673)
|
489 |
+
Instr dry si_sdr: 10.7959 (Std: 8.0152)
|
490 |
+
Instr other sdr: 5.8136 (Std: 3.3279)
|
491 |
+
Instr other l1_freq: 50.1510 (Std: 13.4426)
|
492 |
+
Instr other si_sdr: 4.7747 (Std: 3.4179)
|
493 |
+
Metric avg sdr : 8.9719
|
494 |
+
Metric avg l1_freq : 50.7403
|
495 |
+
Metric avg si_sdr : 7.7853
|
496 |
+
Train epoch: 45 Learning rate: 2.7933491843749998e-05
|
497 |
+
Training loss: 0.094929
|
498 |
+
Instr dry sdr: 12.0053 (Std: 4.9333)
|
499 |
+
Instr dry l1_freq: 51.0921 (Std: 15.2064)
|
500 |
+
Instr dry si_sdr: 10.6287 (Std: 8.1391)
|
501 |
+
Instr other sdr: 5.6823 (Std: 3.3632)
|
502 |
+
Instr other l1_freq: 49.9480 (Std: 13.4875)
|
503 |
+
Instr other si_sdr: 4.6250 (Std: 3.4695)
|
504 |
+
Metric avg sdr : 8.8438
|
505 |
+
Metric avg l1_freq : 50.5201
|
506 |
+
Metric avg si_sdr : 7.6269
|
507 |
+
Train epoch: 46 Learning rate: 2.7933491843749998e-05
|
508 |
+
Training loss: 0.094544
|
509 |
+
Instr dry sdr: 12.2630 (Std: 4.7134)
|
510 |
+
Instr dry l1_freq: 51.8582 (Std: 14.7762)
|
511 |
+
Instr dry si_sdr: 11.2257 (Std: 7.0517)
|
512 |
+
Instr other sdr: 5.9420 (Std: 3.2099)
|
513 |
+
Instr other l1_freq: 50.4802 (Std: 13.1570)
|
514 |
+
Instr other si_sdr: 4.9045 (Std: 3.3225)
|
515 |
+
Metric avg sdr : 9.1025
|
516 |
+
Metric avg l1_freq : 51.1692
|
517 |
+
Metric avg si_sdr : 8.0651
|
518 |
+
Train epoch: 47 Learning rate: 2.7933491843749998e-05
|
519 |
+
Training loss: 0.100300
|
520 |
+
Instr dry sdr: 12.5258 (Std: 4.2445)
|
521 |
+
Instr dry l1_freq: 52.7581 (Std: 13.7617)
|
522 |
+
Instr dry si_sdr: 11.9621 (Std: 5.3200)
|
523 |
+
Instr other sdr: 6.2022 (Std: 2.8190)
|
524 |
+
Instr other l1_freq: 50.9424 (Std: 12.3721)
|
525 |
+
Instr other si_sdr: 5.1532 (Std: 3.0129)
|
526 |
+
Metric avg sdr : 9.3640
|
527 |
+
Metric avg l1_freq : 51.8502
|
528 |
+
Metric avg si_sdr : 8.5576
|
529 |
+
Train epoch: 48 Learning rate: 2.7933491843749998e-05
|
530 |
+
Training loss: 0.095596
|
531 |
+
Instr dry sdr: 12.4497 (Std: 4.4619)
|
532 |
+
Instr dry l1_freq: 52.3584 (Std: 14.2714)
|
533 |
+
Instr dry si_sdr: 11.6337 (Std: 6.2797)
|
534 |
+
Instr other sdr: 6.1288 (Std: 3.0325)
|
535 |
+
Instr other l1_freq: 50.8711 (Std: 12.8454)
|
536 |
+
Instr other si_sdr: 5.0948 (Std: 3.1700)
|
537 |
+
Metric avg sdr : 9.2892
|
538 |
+
Metric avg l1_freq : 51.6147
|
539 |
+
Metric avg si_sdr : 8.3643
|
540 |
+
Train epoch: 49 Learning rate: 2.7933491843749998e-05
|
541 |
+
Training loss: 0.103359
|
542 |
+
Instr dry sdr: 12.4709 (Std: 4.3961)
|
543 |
+
Instr dry l1_freq: 51.9473 (Std: 14.2387)
|
544 |
+
Instr dry si_sdr: 11.8527 (Std: 5.5742)
|
545 |
+
Instr other sdr: 6.1567 (Std: 2.9016)
|
546 |
+
Instr other l1_freq: 50.5832 (Std: 12.7367)
|
547 |
+
Instr other si_sdr: 5.1042 (Std: 3.1088)
|
548 |
+
Metric avg sdr : 9.3138
|
549 |
+
Metric avg l1_freq : 51.2652
|
550 |
+
Metric avg si_sdr : 8.4785
|
551 |
+
Train epoch: 50 Learning rate: 2.7933491843749998e-05
|
552 |
+
Training loss: 0.097140
|
553 |
+
Instr dry sdr: 12.5480 (Std: 4.4551)
|
554 |
+
Instr dry l1_freq: 52.4209 (Std: 14.3051)
|
555 |
+
Instr dry si_sdr: 11.8755 (Std: 5.8093)
|
556 |
+
Instr other sdr: 6.2244 (Std: 2.9714)
|
557 |
+
Instr other l1_freq: 50.8542 (Std: 12.8472)
|
558 |
+
Instr other si_sdr: 5.2055 (Std: 3.1398)
|
559 |
+
Metric avg sdr : 9.3862
|
560 |
+
Metric avg l1_freq : 51.6375
|
561 |
+
Metric avg si_sdr : 8.5405
|
562 |
+
Train epoch: 51 Learning rate: 2.7933491843749998e-05
|
563 |
+
Training loss: 0.095402
|
564 |
+
Instr dry sdr: 12.4629 (Std: 4.4734)
|
565 |
+
Instr dry l1_freq: 52.3328 (Std: 14.3300)
|
566 |
+
Instr dry si_sdr: 11.7317 (Std: 6.0010)
|
567 |
+
Instr other sdr: 6.1470 (Std: 3.0206)
|
568 |
+
Instr other l1_freq: 50.7004 (Std: 12.8662)
|
569 |
+
Instr other si_sdr: 5.1226 (Std: 3.1724)
|
570 |
+
Metric avg sdr : 9.3050
|
571 |
+
Metric avg l1_freq : 51.5166
|
572 |
+
Metric avg si_sdr : 8.4272
|
573 |
+
Train epoch: 52 Learning rate: 2.7933491843749998e-05
|
574 |
+
Training loss: 0.099080
|
575 |
+
Instr dry sdr: 12.6029 (Std: 4.4025)
|
576 |
+
Instr dry l1_freq: 52.7431 (Std: 14.1114)
|
577 |
+
Instr dry si_sdr: 12.0241 (Std: 5.4395)
|
578 |
+
Instr other sdr: 6.2833 (Std: 2.9341)
|
579 |
+
Instr other l1_freq: 51.1383 (Std: 12.6247)
|
580 |
+
Instr other si_sdr: 5.2792 (Std: 3.1178)
|
581 |
+
Metric avg sdr : 9.4431
|
582 |
+
Metric avg l1_freq : 51.9407
|
583 |
+
Metric avg si_sdr : 8.6517
|
584 |
+
Train epoch: 53 Learning rate: 2.7933491843749998e-05
|
585 |
+
Training loss: 0.094254
|
586 |
+
Instr dry sdr: 12.5107 (Std: 4.6218)
|
587 |
+
Instr dry l1_freq: 52.4360 (Std: 14.5449)
|
588 |
+
Instr dry si_sdr: 11.7284 (Std: 6.2280)
|
589 |
+
Instr other sdr: 6.1962 (Std: 3.1480)
|
590 |
+
Instr other l1_freq: 50.9403 (Std: 13.0012)
|
591 |
+
Instr other si_sdr: 5.2072 (Std: 3.2774)
|
592 |
+
Metric avg sdr : 9.3534
|
593 |
+
Metric avg l1_freq : 51.6882
|
594 |
+
Metric avg si_sdr : 8.4678
|
595 |
+
Train epoch: 54 Learning rate: 2.7933491843749998e-05
|
596 |
+
Training loss: 0.091159
|
597 |
+
Instr dry sdr: 12.0227 (Std: 4.9936)
|
598 |
+
Instr dry l1_freq: 51.1259 (Std: 15.4072)
|
599 |
+
Instr dry si_sdr: 10.5224 (Std: 8.5369)
|
600 |
+
Instr other sdr: 5.7271 (Std: 3.4290)
|
601 |
+
Instr other l1_freq: 49.7751 (Std: 13.6606)
|
602 |
+
Instr other si_sdr: 4.7132 (Std: 3.4658)
|
603 |
+
Metric avg sdr : 8.8749
|
604 |
+
Metric avg l1_freq : 50.4505
|
605 |
+
Metric avg si_sdr : 7.6178
|
606 |
+
Train epoch: 55 Learning rate: 2.7933491843749998e-05
|
607 |
+
Training loss: 0.096296
|
608 |
+
Instr dry sdr: 12.2970 (Std: 4.8705)
|
609 |
+
Instr dry l1_freq: 51.8453 (Std: 15.0951)
|
610 |
+
Instr dry si_sdr: 11.0047 (Std: 7.9714)
|
611 |
+
Instr other sdr: 5.9926 (Std: 3.3691)
|
612 |
+
Instr other l1_freq: 50.5093 (Std: 13.4355)
|
613 |
+
Instr other si_sdr: 5.0113 (Std: 3.4300)
|
614 |
+
Metric avg sdr : 9.1448
|
615 |
+
Metric avg l1_freq : 51.1773
|
616 |
+
Metric avg si_sdr : 8.0080
|
617 |
+
Train epoch: 56 Learning rate: 2.6536817251562497e-05
|
618 |
+
Training loss: 0.094687
|
619 |
+
Instr dry sdr: 12.2359 (Std: 5.0098)
|
620 |
+
Instr dry l1_freq: 51.4253 (Std: 15.2918)
|
621 |
+
Instr dry si_sdr: 10.7536 (Std: 8.5601)
|
622 |
+
Instr other sdr: 5.9342 (Std: 3.4720)
|
623 |
+
Instr other l1_freq: 50.4779 (Std: 13.6366)
|
624 |
+
Instr other si_sdr: 4.9585 (Std: 3.5136)
|
625 |
+
Metric avg sdr : 9.0850
|
626 |
+
Metric avg l1_freq : 50.9516
|
627 |
+
Metric avg si_sdr : 7.8560
|
628 |
+
Train epoch: 57 Learning rate: 2.6536817251562497e-05
|
629 |
+
Training loss: 0.095657
|
630 |
+
Instr dry sdr: 12.2102 (Std: 4.9633)
|
631 |
+
Instr dry l1_freq: 51.4960 (Std: 15.2521)
|
632 |
+
Instr dry si_sdr: 10.7497 (Std: 8.4845)
|
633 |
+
Instr other sdr: 5.9077 (Std: 3.4567)
|
634 |
+
Instr other l1_freq: 50.2654 (Std: 13.5850)
|
635 |
+
Instr other si_sdr: 4.9244 (Std: 3.4981)
|
636 |
+
Metric avg sdr : 9.0590
|
637 |
+
Metric avg l1_freq : 50.8807
|
638 |
+
Metric avg si_sdr : 7.8371
|
639 |
+
Train epoch: 58 Learning rate: 2.6536817251562497e-05
|
640 |
+
Training loss: 0.097515
|
641 |
+
Instr dry sdr: 12.4264 (Std: 4.8078)
|
642 |
+
Instr dry l1_freq: 52.1458 (Std: 14.9872)
|
643 |
+
Instr dry si_sdr: 11.3226 (Std: 7.4191)
|
644 |
+
Instr other sdr: 6.1070 (Std: 3.3150)
|
645 |
+
Instr other l1_freq: 50.8045 (Std: 13.3580)
|
646 |
+
Instr other si_sdr: 5.1458 (Std: 3.3906)
|
647 |
+
Metric avg sdr : 9.2667
|
648 |
+
Metric avg l1_freq : 51.4752
|
649 |
+
Metric avg si_sdr : 8.2342
|
650 |
+
Train epoch: 59 Learning rate: 2.5209976388984372e-05
|
651 |
+
Training loss: 0.097498
|
652 |
+
Instr dry sdr: 12.3827 (Std: 4.9430)
|
653 |
+
Instr dry l1_freq: 51.7468 (Std: 15.2411)
|
654 |
+
Instr dry si_sdr: 10.9553 (Std: 8.4594)
|
655 |
+
Instr other sdr: 6.0841 (Std: 3.4534)
|
656 |
+
Instr other l1_freq: 50.8139 (Std: 13.6451)
|
657 |
+
Instr other si_sdr: 5.1394 (Std: 3.4837)
|
658 |
+
Metric avg sdr : 9.2334
|
659 |
+
Metric avg l1_freq : 51.2803
|
660 |
+
Metric avg si_sdr : 8.0473
|
661 |
+
Train epoch: 60 Learning rate: 2.5209976388984372e-05
|
662 |
+
Training loss: 0.093099
|
663 |
+
Instr dry sdr: 12.2849 (Std: 4.9824)
|
664 |
+
Instr dry l1_freq: 51.6414 (Std: 15.1842)
|
665 |
+
Instr dry si_sdr: 10.8583 (Std: 8.4044)
|
666 |
+
Instr other sdr: 5.9955 (Std: 3.4715)
|
667 |
+
Instr other l1_freq: 50.6220 (Std: 13.5627)
|
668 |
+
Instr other si_sdr: 5.0373 (Std: 3.5125)
|
669 |
+
Metric avg sdr : 9.1402
|
670 |
+
Metric avg l1_freq : 51.1317
|
671 |
+
Metric avg si_sdr : 7.9478
|
672 |
+
Train epoch: 61 Learning rate: 2.5209976388984372e-05
|
673 |
+
Training loss: 0.103669
|
674 |
+
Instr dry sdr: 12.0979 (Std: 5.1797)
|
675 |
+
Instr dry l1_freq: 50.9696 (Std: 15.3880)
|
676 |
+
Instr dry si_sdr: 10.4390 (Std: 9.0538)
|
677 |
+
Instr other sdr: 5.8103 (Std: 3.6200)
|
678 |
+
Instr other l1_freq: 50.1947 (Std: 13.6859)
|
679 |
+
Instr other si_sdr: 4.8524 (Std: 3.6527)
|
680 |
+
Metric avg sdr : 8.9541
|
681 |
+
Metric avg l1_freq : 50.5821
|
682 |
+
Metric avg si_sdr : 7.6457
|
683 |
+
Train epoch: 62 Learning rate: 2.3949477569535154e-05
|
684 |
+
Training loss: 0.092208
|
685 |
+
Instr dry sdr: 12.2718 (Std: 5.0631)
|
686 |
+
Instr dry l1_freq: 51.3891 (Std: 15.3569)
|
687 |
+
Instr dry si_sdr: 10.7125 (Std: 8.8047)
|
688 |
+
Instr other sdr: 5.9777 (Std: 3.5298)
|
689 |
+
Instr other l1_freq: 50.5797 (Std: 13.7257)
|
690 |
+
Instr other si_sdr: 5.0241 (Std: 3.5631)
|
691 |
+
Metric avg sdr : 9.1248
|
692 |
+
Metric avg l1_freq : 50.9844
|
693 |
+
Metric avg si_sdr : 7.8683
|
694 |
+
Train epoch: 63 Learning rate: 2.3949477569535154e-05
|
695 |
+
Training loss: 0.102014
|
696 |
+
Instr dry sdr: 11.9243 (Std: 5.3757)
|
697 |
+
Instr dry l1_freq: 50.3253 (Std: 15.8274)
|
698 |
+
Instr dry si_sdr: 10.0076 (Std: 9.6708)
|
699 |
+
Instr other sdr: 5.6612 (Std: 3.7498)
|
700 |
+
Instr other l1_freq: 49.9824 (Std: 13.9572)
|
701 |
+
Instr other si_sdr: 4.7142 (Std: 3.7771)
|
702 |
+
Metric avg sdr : 8.7927
|
703 |
+
Metric avg l1_freq : 50.1539
|
704 |
+
Metric avg si_sdr : 7.3609
|
705 |
+
Train epoch: 64 Learning rate: 2.3949477569535154e-05
|
706 |
+
Training loss: 0.095988
|
707 |
+
Instr dry sdr: 12.2540 (Std: 5.0462)
|
708 |
+
Instr dry l1_freq: 51.4500 (Std: 15.3783)
|
709 |
+
Instr dry si_sdr: 10.7858 (Std: 8.5484)
|
710 |
+
Instr other sdr: 5.9716 (Std: 3.5017)
|
711 |
+
Instr other l1_freq: 50.5902 (Std: 13.7341)
|
712 |
+
Instr other si_sdr: 5.0183 (Std: 3.5460)
|
713 |
+
Metric avg sdr : 9.1128
|
714 |
+
Metric avg l1_freq : 51.0201
|
715 |
+
Metric avg si_sdr : 7.9021
|
716 |
+
Train epoch: 65 Learning rate: 2.2752003691058396e-05
|
717 |
+
Training loss: 0.098379
|
718 |
+
Instr dry sdr: 12.3659 (Std: 5.0193)
|
719 |
+
Instr dry l1_freq: 51.6833 (Std: 15.3331)
|
720 |
+
Instr dry si_sdr: 10.9391 (Std: 8.4503)
|
721 |
+
Instr other sdr: 6.0788 (Std: 3.4828)
|
722 |
+
Instr other l1_freq: 50.8337 (Std: 13.6849)
|
723 |
+
Instr other si_sdr: 5.1414 (Std: 3.5247)
|
724 |
+
Metric avg sdr : 9.2224
|
725 |
+
Metric avg l1_freq : 51.2585
|
726 |
+
Metric avg si_sdr : 8.0402
|
727 |
+
Train epoch: 66 Learning rate: 2.2752003691058396e-05
|
728 |
+
Training loss: 0.091182
|
729 |
+
Instr dry sdr: 12.5520 (Std: 4.7837)
|
730 |
+
Instr dry l1_freq: 52.3609 (Std: 14.9107)
|
731 |
+
Instr dry si_sdr: 11.5022 (Std: 7.2267)
|
732 |
+
Instr other sdr: 6.2720 (Std: 3.3150)
|
733 |
+
Instr other l1_freq: 51.2592 (Std: 13.3255)
|
734 |
+
Instr other si_sdr: 5.3416 (Std: 3.3879)
|
735 |
+
Metric avg sdr : 9.4120
|
736 |
+
Metric avg l1_freq : 51.8101
|
737 |
+
Metric avg si_sdr : 8.4219
|
738 |
+
Train epoch: 67 Learning rate: 2.2752003691058396e-05
|
739 |
+
Training loss: 0.092582
|
740 |
+
Instr dry sdr: 12.6093 (Std: 4.8153)
|
741 |
+
Instr dry l1_freq: 52.3751 (Std: 15.0178)
|
742 |
+
Instr dry si_sdr: 11.5044 (Std: 7.4468)
|
743 |
+
Instr other sdr: 6.3197 (Std: 3.3409)
|
744 |
+
Instr other l1_freq: 51.4147 (Std: 13.4250)
|
745 |
+
Instr other si_sdr: 5.4056 (Std: 3.4002)
|
746 |
+
Metric avg sdr : 9.4645
|
747 |
+
Metric avg l1_freq : 51.8949
|
748 |
+
Metric avg si_sdr : 8.4550
|
749 |
+
Train epoch: 68 Learning rate: 2.2752003691058396e-05
|
750 |
+
Training loss: 0.095525
|
751 |
+
Instr dry sdr: 12.6933 (Std: 4.6196)
|
752 |
+
Instr dry l1_freq: 52.7676 (Std: 14.5984)
|
753 |
+
Instr dry si_sdr: 11.9203 (Std: 6.2891)
|
754 |
+
Instr other sdr: 6.4140 (Std: 3.1507)
|
755 |
+
Instr other l1_freq: 51.5851 (Std: 12.9630)
|
756 |
+
Instr other si_sdr: 5.4850 (Std: 3.2781)
|
757 |
+
Metric avg sdr : 9.5537
|
758 |
+
Metric avg l1_freq : 52.1764
|
759 |
+
Metric avg si_sdr : 8.7026
|
760 |
+
Train epoch: 69 Learning rate: 2.2752003691058396e-05
|
761 |
+
Training loss: 0.094700
|
762 |
+
Instr dry sdr: 12.6011 (Std: 4.7247)
|
763 |
+
Instr dry l1_freq: 52.4801 (Std: 14.7547)
|
764 |
+
Instr dry si_sdr: 11.6395 (Std: 6.9502)
|
765 |
+
Instr other sdr: 6.3259 (Std: 3.2496)
|
766 |
+
Instr other l1_freq: 51.3514 (Std: 13.1609)
|
767 |
+
Instr other si_sdr: 5.3912 (Std: 3.3501)
|
768 |
+
Metric avg sdr : 9.4635
|
769 |
+
Metric avg l1_freq : 51.9158
|
770 |
+
Metric avg si_sdr : 8.5153
|
771 |
+
Train epoch: 70 Learning rate: 2.2752003691058396e-05
|
772 |
+
Training loss: 0.094604
|
773 |
+
Instr dry sdr: 12.7777 (Std: 4.4996)
|
774 |
+
Instr dry l1_freq: 52.9749 (Std: 14.2646)
|
775 |
+
Instr dry si_sdr: 12.0962 (Std: 5.9162)
|
776 |
+
Instr other sdr: 6.4962 (Std: 3.0231)
|
777 |
+
Instr other l1_freq: 51.8018 (Std: 12.7076)
|
778 |
+
Instr other si_sdr: 5.5538 (Std: 3.1770)
|
779 |
+
Metric avg sdr : 9.6370
|
780 |
+
Metric avg l1_freq : 52.3884
|
781 |
+
Metric avg si_sdr : 8.8250
|
782 |
+
Train epoch: 71 Learning rate: 2.2752003691058396e-05
|
783 |
+
Training loss: 0.097073
|
784 |
+
Instr dry sdr: 12.5640 (Std: 4.8496)
|
785 |
+
Instr dry l1_freq: 52.2550 (Std: 14.9567)
|
786 |
+
Instr dry si_sdr: 11.5595 (Std: 7.0962)
|
787 |
+
Instr other sdr: 6.2763 (Std: 3.3485)
|
788 |
+
Instr other l1_freq: 51.3199 (Std: 13.3586)
|
789 |
+
Instr other si_sdr: 5.3568 (Std: 3.4202)
|
790 |
+
Metric avg sdr : 9.4202
|
791 |
+
Metric avg l1_freq : 51.7875
|
792 |
+
Metric avg si_sdr : 8.4581
|
793 |
+
Train epoch: 72 Learning rate: 2.2752003691058396e-05
|
794 |
+
Training loss: 0.095600
|
795 |
+
Instr dry sdr: 12.8003 (Std: 4.5423)
|
796 |
+
Instr dry l1_freq: 52.7600 (Std: 14.3588)
|
797 |
+
Instr dry si_sdr: 12.1805 (Std: 5.7041)
|
798 |
+
Instr other sdr: 6.5115 (Std: 2.9982)
|
799 |
+
Instr other l1_freq: 52.0823 (Std: 12.7863)
|
800 |
+
Instr other si_sdr: 5.5840 (Std: 3.1398)
|
801 |
+
Metric avg sdr : 9.6559
|
802 |
+
Metric avg l1_freq : 52.4211
|
803 |
+
Metric avg si_sdr : 8.8822
|
804 |
+
Train epoch: 73 Learning rate: 2.2752003691058396e-05
|
805 |
+
Training loss: 0.094673
|
806 |
+
Instr dry sdr: 12.4820 (Std: 4.9681)
|
807 |
+
Instr dry l1_freq: 51.8282 (Std: 15.2062)
|
808 |
+
Instr dry si_sdr: 11.2022 (Std: 8.0409)
|
809 |
+
Instr other sdr: 6.1976 (Std: 3.4702)
|
810 |
+
Instr other l1_freq: 51.1850 (Std: 13.6441)
|
811 |
+
Instr other si_sdr: 5.2832 (Std: 3.5149)
|
812 |
+
Metric avg sdr : 9.3398
|
813 |
+
Metric avg l1_freq : 51.5066
|
814 |
+
Metric avg si_sdr : 8.2427
|
815 |
+
Train epoch: 74 Learning rate: 2.2752003691058396e-05
|
816 |
+
Training loss: 0.098970
|
817 |
+
Instr dry sdr: 13.0093 (Std: 4.1357)
|
818 |
+
Instr dry l1_freq: 53.5719 (Std: 13.3422)
|
819 |
+
Instr dry si_sdr: 12.5743 (Std: 4.8086)
|
820 |
+
Instr other sdr: 6.7228 (Std: 2.5965)
|
821 |
+
Instr other l1_freq: 52.6082 (Std: 11.9304)
|
822 |
+
Instr other si_sdr: 5.7645 (Std: 2.8514)
|
823 |
+
Metric avg sdr : 9.8661
|
824 |
+
Metric avg l1_freq : 53.0901
|
825 |
+
Metric avg si_sdr : 9.1694
|
826 |
+
Train epoch: 75 Learning rate: 2.2752003691058396e-05
|
827 |
+
Training loss: 0.098243
|
828 |
+
Instr dry sdr: 12.3501 (Std: 5.0944)
|
829 |
+
Instr dry l1_freq: 51.7057 (Std: 15.2088)
|
830 |
+
Instr dry si_sdr: 10.9885 (Std: 8.2387)
|
831 |
+
Instr other sdr: 6.0836 (Std: 3.5578)
|
832 |
+
Instr other l1_freq: 51.0110 (Std: 13.5603)
|
833 |
+
Instr other si_sdr: 5.1709 (Std: 3.5957)
|
834 |
+
Metric avg sdr : 9.2169
|
835 |
+
Metric avg l1_freq : 51.3583
|
836 |
+
Metric avg si_sdr : 8.0797
|
837 |
+
Train epoch: 76 Learning rate: 2.2752003691058396e-05
|
838 |
+
Training loss: 0.100630
|
839 |
+
Instr dry sdr: 12.7034 (Std: 4.6444)
|
840 |
+
Instr dry l1_freq: 52.7285 (Std: 14.6490)
|
841 |
+
Instr dry si_sdr: 11.8711 (Std: 6.4940)
|
842 |
+
Instr other sdr: 6.4306 (Std: 3.1718)
|
843 |
+
Instr other l1_freq: 51.6144 (Std: 13.1196)
|
844 |
+
Instr other si_sdr: 5.5063 (Std: 3.2832)
|
845 |
+
Metric avg sdr : 9.5670
|
846 |
+
Metric avg l1_freq : 52.1714
|
847 |
+
Metric avg si_sdr : 8.6887
|
848 |
+
Train epoch: 77 Learning rate: 2.2752003691058396e-05
|
849 |
+
Training loss: 0.096283
|
850 |
+
Instr dry sdr: 12.4348 (Std: 5.0475)
|
851 |
+
Instr dry l1_freq: 51.7710 (Std: 15.2990)
|
852 |
+
Instr dry si_sdr: 11.0244 (Std: 8.4198)
|
853 |
+
Instr other sdr: 6.1578 (Std: 3.5390)
|
854 |
+
Instr other l1_freq: 50.9328 (Std: 13.6746)
|
855 |
+
Instr other si_sdr: 5.2448 (Std: 3.5768)
|
856 |
+
Metric avg sdr : 9.2963
|
857 |
+
Metric avg l1_freq : 51.3519
|
858 |
+
Metric avg si_sdr : 8.1346
|
859 |
+
Train epoch: 78 Learning rate: 2.1614403506505474e-05
|
860 |
+
Training loss: 0.097837
|
861 |
+
Instr dry sdr: 13.0207 (Std: 4.1453)
|
862 |
+
Instr dry l1_freq: 53.6459 (Std: 13.1713)
|
863 |
+
Instr dry si_sdr: 12.6080 (Std: 4.7312)
|
864 |
+
Instr other sdr: 6.7353 (Std: 2.5701)
|
865 |
+
Instr other l1_freq: 52.6842 (Std: 11.7093)
|
866 |
+
Instr other si_sdr: 5.7647 (Std: 2.8744)
|
867 |
+
Metric avg sdr : 9.8780
|
868 |
+
Metric avg l1_freq : 53.1650
|
869 |
+
Metric avg si_sdr : 9.1863
|
870 |
+
Train epoch: 79 Learning rate: 2.1614403506505474e-05
|
871 |
+
Training loss: 0.101947
|
872 |
+
Instr dry sdr: 12.9332 (Std: 4.3436)
|
873 |
+
Instr dry l1_freq: 53.3537 (Std: 13.8190)
|
874 |
+
Instr dry si_sdr: 12.4283 (Std: 5.2005)
|
875 |
+
Instr other sdr: 6.6543 (Std: 2.8273)
|
876 |
+
Instr other l1_freq: 52.4335 (Std: 12.2786)
|
877 |
+
Instr other si_sdr: 5.7128 (Std: 3.0416)
|
878 |
+
Metric avg sdr : 9.7937
|
879 |
+
Metric avg l1_freq : 52.8936
|
880 |
+
Metric avg si_sdr : 9.0706
|
881 |
+
Train epoch: 80 Learning rate: 2.1614403506505474e-05
|
882 |
+
Training loss: 0.099350
|
883 |
+
Instr dry sdr: 12.4723 (Std: 5.0149)
|
884 |
+
Instr dry l1_freq: 52.1068 (Std: 15.3157)
|
885 |
+
Instr dry si_sdr: 11.0805 (Std: 8.3241)
|
886 |
+
Instr other sdr: 6.2074 (Std: 3.5594)
|
887 |
+
Instr other l1_freq: 51.0360 (Std: 13.6940)
|
888 |
+
Instr other si_sdr: 5.3164 (Std: 3.5688)
|
889 |
+
Metric avg sdr : 9.3399
|
890 |
+
Metric avg l1_freq : 51.5714
|
891 |
+
Metric avg si_sdr : 8.1985
|
892 |
+
Train epoch: 81 Learning rate: 2.1614403506505474e-05
|
893 |
+
Training loss: 0.093635
|
894 |
+
Instr dry sdr: 12.7099 (Std: 4.8541)
|
895 |
+
Instr dry l1_freq: 52.5968 (Std: 15.0617)
|
896 |
+
Instr dry si_sdr: 11.8017 (Std: 6.8042)
|
897 |
+
Instr other sdr: 6.4319 (Std: 3.3872)
|
898 |
+
Instr other l1_freq: 51.6630 (Std: 13.4759)
|
899 |
+
Instr other si_sdr: 5.5562 (Std: 3.4348)
|
900 |
+
Metric avg sdr : 9.5709
|
901 |
+
Metric avg l1_freq : 52.1299
|
902 |
+
Metric avg si_sdr : 8.6790
|
903 |
+
Train epoch: 82 Learning rate: 2.05336833311802e-05
|
904 |
+
Training loss: 0.096353
|
905 |
+
Instr dry sdr: 12.9787 (Std: 4.3767)
|
906 |
+
Instr dry l1_freq: 53.1769 (Std: 14.0526)
|
907 |
+
Instr dry si_sdr: 12.4865 (Std: 5.1844)
|
908 |
+
Instr other sdr: 6.6993 (Std: 2.8520)
|
909 |
+
Instr other l1_freq: 52.2443 (Std: 12.6081)
|
910 |
+
Instr other si_sdr: 5.7706 (Std: 3.0585)
|
911 |
+
Metric avg sdr : 9.8390
|
912 |
+
Metric avg l1_freq : 52.7106
|
913 |
+
Metric avg si_sdr : 9.1286
|
914 |
+
Train epoch: 83 Learning rate: 2.05336833311802e-05
|
915 |
+
Training loss: 0.097904
|
916 |
+
Instr dry sdr: 12.7420 (Std: 4.8454)
|
917 |
+
Instr dry l1_freq: 52.7578 (Std: 15.0835)
|
918 |
+
Instr dry si_sdr: 11.7943 (Std: 6.9475)
|
919 |
+
Instr other sdr: 6.4755 (Std: 3.3666)
|
920 |
+
Instr other l1_freq: 51.7215 (Std: 13.4713)
|
921 |
+
Instr other si_sdr: 5.6022 (Std: 3.4287)
|
922 |
+
Metric avg sdr : 9.6088
|
923 |
+
Metric avg l1_freq : 52.2396
|
924 |
+
Metric avg si_sdr : 8.6982
|
925 |
+
Train epoch: 84 Learning rate: 2.05336833311802e-05
|
926 |
+
Training loss: 0.100543
|
927 |
+
Instr dry sdr: 12.6633 (Std: 4.9497)
|
928 |
+
Instr dry l1_freq: 52.5279 (Std: 15.2972)
|
929 |
+
Instr dry si_sdr: 11.4269 (Std: 7.9240)
|
930 |
+
Instr other sdr: 6.3931 (Std: 3.4863)
|
931 |
+
Instr other l1_freq: 51.4757 (Std: 13.7058)
|
932 |
+
Instr other si_sdr: 5.5262 (Std: 3.5109)
|
933 |
+
Metric avg sdr : 9.5282
|
934 |
+
Metric avg l1_freq : 52.0018
|
935 |
+
Metric avg si_sdr : 8.4766
|
936 |
+
Train epoch: 85 Learning rate: 1.9506999164621187e-05
|
937 |
+
Training loss: 0.094997
|
938 |
+
Instr dry sdr: 12.6071 (Std: 4.9734)
|
939 |
+
Instr dry l1_freq: 52.4756 (Std: 15.3162)
|
940 |
+
Instr dry si_sdr: 11.3062 (Std: 8.1111)
|
941 |
+
Instr other sdr: 6.3386 (Std: 3.5149)
|
942 |
+
Instr other l1_freq: 51.1921 (Std: 13.6591)
|
943 |
+
Instr other si_sdr: 5.4646 (Std: 3.5364)
|
944 |
+
Metric avg sdr : 9.4728
|
945 |
+
Metric avg l1_freq : 51.8338
|
946 |
+
Metric avg si_sdr : 8.3854
|
947 |
+
Train epoch: 86 Learning rate: 1.9506999164621187e-05
|
948 |
+
Training loss: 0.088851
|
949 |
+
Instr dry sdr: 12.7812 (Std: 4.8315)
|
950 |
+
Instr dry l1_freq: 52.8639 (Std: 14.9941)
|
951 |
+
Instr dry si_sdr: 11.8750 (Std: 6.8288)
|
952 |
+
Instr other sdr: 6.5110 (Std: 3.3512)
|
953 |
+
Instr other l1_freq: 51.8905 (Std: 13.4302)
|
954 |
+
Instr other si_sdr: 5.6364 (Std: 3.4245)
|
955 |
+
Metric avg sdr : 9.6461
|
956 |
+
Metric avg l1_freq : 52.3772
|
957 |
+
Metric avg si_sdr : 8.7557
|
958 |
+
Train epoch: 87 Learning rate: 1.9506999164621187e-05
|
959 |
+
Training loss: 0.096688
|
960 |
+
Instr dry sdr: 12.6107 (Std: 5.0691)
|
961 |
+
Instr dry l1_freq: 52.2532 (Std: 15.5093)
|
962 |
+
Instr dry si_sdr: 11.1608 (Std: 8.5200)
|
963 |
+
Instr other sdr: 6.3398 (Std: 3.6006)
|
964 |
+
Instr other l1_freq: 51.5105 (Std: 13.9688)
|
965 |
+
Instr other si_sdr: 5.4765 (Std: 3.5912)
|
966 |
+
Metric avg sdr : 9.4752
|
967 |
+
Metric avg l1_freq : 51.8819
|
968 |
+
Metric avg si_sdr : 8.3187
|
969 |
+
Train epoch: 88 Learning rate: 1.8531649206390126e-05
|
970 |
+
Training loss: 0.088508
|
971 |
+
Instr dry sdr: 12.7883 (Std: 4.8446)
|
972 |
+
Instr dry l1_freq: 52.9156 (Std: 15.0524)
|
973 |
+
Instr dry si_sdr: 11.9754 (Std: 6.4877)
|
974 |
+
Instr other sdr: 6.5203 (Std: 3.3676)
|
975 |
+
Instr other l1_freq: 51.7987 (Std: 13.4090)
|
976 |
+
Instr other si_sdr: 5.6604 (Std: 3.4343)
|
977 |
+
Metric avg sdr : 9.6543
|
978 |
+
Metric avg l1_freq : 52.3571
|
979 |
+
Metric avg si_sdr : 8.8179
|
980 |
+
Train epoch: 89 Learning rate: 1.8531649206390126e-05
|
981 |
+
Training loss: 0.093433
|
982 |
+
Instr dry sdr: 12.6572 (Std: 4.9947)
|
983 |
+
Instr dry l1_freq: 52.4093 (Std: 15.3350)
|
984 |
+
Instr dry si_sdr: 11.4798 (Std: 7.6844)
|
985 |
+
Instr other sdr: 6.3887 (Std: 3.5282)
|
986 |
+
Instr other l1_freq: 51.5581 (Std: 13.7855)
|
987 |
+
Instr other si_sdr: 5.5268 (Std: 3.5389)
|
988 |
+
Metric avg sdr : 9.5229
|
989 |
+
Metric avg l1_freq : 51.9837
|
990 |
+
Metric avg si_sdr : 8.5033
|
991 |
+
Train epoch: 90 Learning rate: 1.8531649206390126e-05
|
992 |
+
Training loss: 0.094809
|
993 |
+
Instr dry sdr: 13.1507 (Std: 4.1088)
|
994 |
+
Instr dry l1_freq: 53.7715 (Std: 13.3363)
|
995 |
+
Instr dry si_sdr: 12.7707 (Std: 4.6134)
|
996 |
+
Instr other sdr: 6.8830 (Std: 2.5547)
|
997 |
+
Instr other l1_freq: 52.7358 (Std: 11.8587)
|
998 |
+
Instr other si_sdr: 5.9448 (Std: 2.8721)
|
999 |
+
Metric avg sdr : 10.0169
|
1000 |
+
Metric avg l1_freq : 53.2536
|
1001 |
+
Metric avg si_sdr : 9.3577
|
1002 |
+
Train epoch: 91 Learning rate: 1.8531649206390126e-05
|
1003 |
+
Training loss: 0.098019
|
1004 |
+
Instr dry sdr: 12.2693 (Std: 5.2773)
|
1005 |
+
Instr dry l1_freq: 51.0024 (Std: 15.6507)
|
1006 |
+
Instr dry si_sdr: 10.1893 (Std: 10.3445)
|
1007 |
+
Instr other sdr: 6.0155 (Std: 3.7583)
|
1008 |
+
Instr other l1_freq: 50.2293 (Std: 13.8978)
|
1009 |
+
Instr other si_sdr: 5.1193 (Std: 3.7885)
|
1010 |
+
Metric avg sdr : 9.1424
|
1011 |
+
Metric avg l1_freq : 50.6159
|
1012 |
+
Metric avg si_sdr : 7.6543
|
1013 |
+
Train epoch: 92 Learning rate: 1.8531649206390126e-05
|
1014 |
+
Training loss: 0.095568
|
1015 |
+
Instr dry sdr: 12.1517 (Std: 5.4645)
|
1016 |
+
Instr dry l1_freq: 50.5573 (Std: 16.0760)
|
1017 |
+
Instr dry si_sdr: 9.7243 (Std: 11.3482)
|
1018 |
+
Instr other sdr: 5.9071 (Std: 3.8700)
|
1019 |
+
Instr other l1_freq: 50.2320 (Std: 14.1274)
|
1020 |
+
Instr other si_sdr: 5.0182 (Std: 3.9033)
|
1021 |
+
Metric avg sdr : 9.0294
|
1022 |
+
Metric avg l1_freq : 50.3946
|
1023 |
+
Metric avg si_sdr : 7.3713
|
1024 |
+
Train epoch: 93 Learning rate: 1.8531649206390126e-05
|
1025 |
+
Training loss: 0.099267
|
1026 |
+
Instr dry sdr: 12.3923 (Std: 5.3252)
|
1027 |
+
Instr dry l1_freq: 51.3353 (Std: 15.7117)
|
1028 |
+
Instr dry si_sdr: 10.3237 (Std: 10.3709)
|
1029 |
+
Instr other sdr: 6.1382 (Std: 3.7639)
|
1030 |
+
Instr other l1_freq: 50.9070 (Std: 14.0275)
|
1031 |
+
Instr other si_sdr: 5.2708 (Std: 3.7720)
|
1032 |
+
Metric avg sdr : 9.2653
|
1033 |
+
Metric avg l1_freq : 51.1212
|
1034 |
+
Metric avg si_sdr : 7.7973
|
1035 |
+
Train epoch: 94 Learning rate: 1.760506674607062e-05
|
1036 |
+
Training loss: 0.098203
|
1037 |
+
Instr dry sdr: 12.1776 (Std: 5.5474)
|
1038 |
+
Instr dry l1_freq: 50.2574 (Std: 16.2700)
|
1039 |
+
Instr dry si_sdr: 9.8557 (Std: 11.1696)
|
1040 |
+
Instr other sdr: 5.9308 (Std: 3.9415)
|
1041 |
+
Instr other l1_freq: 50.1638 (Std: 14.2621)
|
1042 |
+
Instr other si_sdr: 5.0634 (Std: 3.9698)
|
1043 |
+
Metric avg sdr : 9.0542
|
1044 |
+
Metric avg l1_freq : 50.2106
|
1045 |
+
Metric avg si_sdr : 7.4596
|
1046 |
+
Train epoch: 95 Learning rate: 1.760506674607062e-05
|
1047 |
+
Training loss: 0.091828
|
1048 |
+
Instr dry sdr: 12.7154 (Std: 5.0649)
|
1049 |
+
Instr dry l1_freq: 52.3362 (Std: 15.4446)
|
1050 |
+
Instr dry si_sdr: 11.3587 (Std: 8.4150)
|
1051 |
+
Instr other sdr: 6.4484 (Std: 3.5644)
|
1052 |
+
Instr other l1_freq: 51.5290 (Std: 13.8994)
|
1053 |
+
Instr other si_sdr: 5.6174 (Std: 3.5561)
|
1054 |
+
Metric avg sdr : 9.5819
|
1055 |
+
Metric avg l1_freq : 51.9326
|
1056 |
+
Metric avg si_sdr : 8.4881
|
1057 |
+
Train epoch: 96 Learning rate: 1.760506674607062e-05
|
1058 |
+
Training loss: 0.092210
|
1059 |
+
Instr dry sdr: 12.5542 (Std: 5.1640)
|
1060 |
+
Instr dry l1_freq: 51.9249 (Std: 15.4726)
|
1061 |
+
Instr dry si_sdr: 10.9541 (Std: 9.0623)
|
1062 |
+
Instr other sdr: 6.2939 (Std: 3.6601)
|
1063 |
+
Instr other l1_freq: 51.3135 (Std: 13.9318)
|
1064 |
+
Instr other si_sdr: 5.4368 (Std: 3.6569)
|
1065 |
+
Metric avg sdr : 9.4241
|
1066 |
+
Metric avg l1_freq : 51.6192
|
1067 |
+
Metric avg si_sdr : 8.1955
|
1068 |
+
Train epoch: 97 Learning rate: 1.6724813408767087e-05
|
1069 |
+
Training loss: 0.092498
|
1070 |
+
Instr dry sdr: 12.3693 (Std: 5.3792)
|
1071 |
+
Instr dry l1_freq: 51.2841 (Std: 15.7054)
|
1072 |
+
Instr dry si_sdr: 10.3668 (Std: 10.1002)
|
1073 |
+
Instr other sdr: 6.1246 (Std: 3.8157)
|
1074 |
+
Instr other l1_freq: 50.8108 (Std: 13.9787)
|
1075 |
+
Instr other si_sdr: 5.2606 (Std: 3.8357)
|
1076 |
+
Metric avg sdr : 9.2470
|
1077 |
+
Metric avg l1_freq : 51.0475
|
1078 |
+
Metric avg si_sdr : 7.8137
|
1079 |
+
Train epoch: 98 Learning rate: 1.6724813408767087e-05
|
1080 |
+
Training loss: 0.096498
|
1081 |
+
Instr dry sdr: 12.7051 (Std: 5.0507)
|
1082 |
+
Instr dry l1_freq: 52.3622 (Std: 15.4344)
|
1083 |
+
Instr dry si_sdr: 11.5561 (Std: 7.6149)
|
1084 |
+
Instr other sdr: 6.4355 (Std: 3.5707)
|
1085 |
+
Instr other l1_freq: 51.5607 (Std: 13.8798)
|
1086 |
+
Instr other si_sdr: 5.6009 (Std: 3.5600)
|
1087 |
+
Metric avg sdr : 9.5703
|
1088 |
+
Metric avg l1_freq : 51.9614
|
1089 |
+
Metric avg si_sdr : 8.5785
|
1090 |
+
Train epoch: 99 Learning rate: 1.6724813408767087e-05
|
1091 |
+
Training loss: 0.100907
|
1092 |
+
Instr dry sdr: 12.7264 (Std: 4.9980)
|
1093 |
+
Instr dry l1_freq: 52.5787 (Std: 15.3304)
|
1094 |
+
Instr dry si_sdr: 11.6759 (Std: 7.3167)
|
1095 |
+
Instr other sdr: 6.4726 (Std: 3.5190)
|
1096 |
+
Instr other l1_freq: 51.7835 (Std: 13.7848)
|
1097 |
+
Instr other si_sdr: 5.6326 (Std: 3.5291)
|
1098 |
+
Metric avg sdr : 9.5995
|
1099 |
+
Metric avg l1_freq : 52.1811
|
1100 |
+
Metric avg si_sdr : 8.6543
|
1101 |
+
Train epoch: 100 Learning rate: 1.5888572738328732e-05
|
1102 |
+
Training loss: 0.092124
|
1103 |
+
Instr dry sdr: 12.5440 (Std: 5.1811)
|
1104 |
+
Instr dry l1_freq: 52.0072 (Std: 15.5140)
|
1105 |
+
Instr dry si_sdr: 11.0584 (Std: 8.6049)
|
1106 |
+
Instr other sdr: 6.2961 (Std: 3.6691)
|
1107 |
+
Instr other l1_freq: 51.5142 (Std: 13.9767)
|
1108 |
+
Instr other si_sdr: 5.4429 (Std: 3.6636)
|
1109 |
+
Metric avg sdr : 9.4201
|
1110 |
+
Metric avg l1_freq : 51.7607
|
1111 |
+
Metric avg si_sdr : 8.2507
|
1112 |
+
Train epoch: 101 Learning rate: 1.5888572738328732e-05
|
1113 |
+
Training loss: 0.090086
|
1114 |
+
Instr dry sdr: 12.5978 (Std: 5.1102)
|
1115 |
+
Instr dry l1_freq: 52.2081 (Std: 15.3974)
|
1116 |
+
Instr dry si_sdr: 11.2203 (Std: 8.3888)
|
1117 |
+
Instr other sdr: 6.3431 (Std: 3.6186)
|
1118 |
+
Instr other l1_freq: 51.4018 (Std: 13.8223)
|
1119 |
+
Instr other si_sdr: 5.4885 (Std: 3.6250)
|
1120 |
+
Metric avg sdr : 9.4705
|
1121 |
+
Metric avg l1_freq : 51.8049
|
1122 |
+
Metric avg si_sdr : 8.3544
|
1123 |
+
Train epoch: 102 Learning rate: 1.5888572738328732e-05
|
1124 |
+
Training loss: 0.096567
|
1125 |
+
Instr dry sdr: 12.7490 (Std: 4.9942)
|
1126 |
+
Instr dry l1_freq: 52.5952 (Std: 15.2602)
|
1127 |
+
Instr dry si_sdr: 11.6794 (Std: 7.4370)
|
1128 |
+
Instr other sdr: 6.4891 (Std: 3.5021)
|
1129 |
+
Instr other l1_freq: 51.8253 (Std: 13.7127)
|
1130 |
+
Instr other si_sdr: 5.6486 (Std: 3.5285)
|
1131 |
+
Metric avg sdr : 9.6190
|
1132 |
+
Metric avg l1_freq : 52.2103
|
1133 |
+
Metric avg si_sdr : 8.6640
|
1134 |
+
Train epoch: 103 Learning rate: 1.5094144101412296e-05
|
1135 |
+
Training loss: 0.096566
|
1136 |
+
Instr dry sdr: 12.7887 (Std: 4.9264)
|
1137 |
+
Instr dry l1_freq: 52.6449 (Std: 15.1826)
|
1138 |
+
Instr dry si_sdr: 11.9172 (Std: 6.7330)
|
1139 |
+
Instr other sdr: 6.5313 (Std: 3.4205)
|
1140 |
+
Instr other l1_freq: 52.0825 (Std: 13.6229)
|
1141 |
+
Instr other si_sdr: 5.6871 (Std: 3.4548)
|
1142 |
+
Metric avg sdr : 9.6600
|
1143 |
+
Metric avg l1_freq : 52.3637
|
1144 |
+
Metric avg si_sdr : 8.8022
|
1145 |
+
Train epoch: 104 Learning rate: 1.5094144101412296e-05
|
1146 |
+
Training loss: 0.093049
|
1147 |
+
Instr dry sdr: 12.6579 (Std: 5.0226)
|
1148 |
+
Instr dry l1_freq: 52.3947 (Std: 15.3537)
|
1149 |
+
Instr dry si_sdr: 11.4864 (Std: 7.7357)
|
1150 |
+
Instr other sdr: 6.4079 (Std: 3.5368)
|
1151 |
+
Instr other l1_freq: 51.5370 (Std: 13.7596)
|
1152 |
+
Instr other si_sdr: 5.5595 (Std: 3.5535)
|
1153 |
+
Metric avg sdr : 9.5329
|
1154 |
+
Metric avg l1_freq : 51.9658
|
1155 |
+
Metric avg si_sdr : 8.5229
|
1156 |
+
Train epoch: 105 Learning rate: 1.5094144101412296e-05
|
1157 |
+
Training loss: 0.098858
|
1158 |
+
Instr dry sdr: 12.6818 (Std: 5.0442)
|
1159 |
+
Instr dry l1_freq: 52.4730 (Std: 15.3907)
|
1160 |
+
Instr dry si_sdr: 11.5151 (Std: 7.6824)
|
1161 |
+
Instr other sdr: 6.4299 (Std: 3.5690)
|
1162 |
+
Instr other l1_freq: 51.6939 (Std: 13.8234)
|
1163 |
+
Instr other si_sdr: 5.5873 (Std: 3.5722)
|
1164 |
+
Metric avg sdr : 9.5559
|
1165 |
+
Metric avg l1_freq : 52.0835
|
1166 |
+
Metric avg si_sdr : 8.5512
|
1167 |
+
Train epoch: 106 Learning rate: 1.433943689634168e-05
|
1168 |
+
Training loss: 0.097726
|
1169 |
+
Instr dry sdr: 12.5751 (Std: 5.1911)
|
1170 |
+
Instr dry l1_freq: 51.9894 (Std: 15.5097)
|
1171 |
+
Instr dry si_sdr: 11.0083 (Std: 8.8566)
|
1172 |
+
Instr other sdr: 6.3257 (Std: 3.6878)
|
1173 |
+
Instr other l1_freq: 51.5607 (Std: 13.9770)
|
1174 |
+
Instr other si_sdr: 5.4763 (Std: 3.6851)
|
1175 |
+
Metric avg sdr : 9.4504
|
1176 |
+
Metric avg l1_freq : 51.7750
|
1177 |
+
Metric avg si_sdr : 8.2423
|
1178 |
+
Train epoch: 107 Learning rate: 1.433943689634168e-05
|
1179 |
+
Training loss: 0.092017
|
1180 |
+
Instr dry sdr: 12.7352 (Std: 5.0253)
|
1181 |
+
Instr dry l1_freq: 52.4895 (Std: 15.3276)
|
1182 |
+
Instr dry si_sdr: 11.6367 (Std: 7.5058)
|
1183 |
+
Instr other sdr: 6.4876 (Std: 3.5314)
|
1184 |
+
Instr other l1_freq: 51.7795 (Std: 13.7572)
|
1185 |
+
Instr other si_sdr: 5.6532 (Std: 3.5388)
|
1186 |
+
Metric avg sdr : 9.6114
|
1187 |
+
Metric avg l1_freq : 52.1345
|
1188 |
+
Metric avg si_sdr : 8.6450
|
1189 |
+
Train epoch: 108 Learning rate: 1.433943689634168e-05
|
1190 |
+
Training loss: 0.093190
|
1191 |
+
Instr dry sdr: 12.8397 (Std: 4.8776)
|
1192 |
+
Instr dry l1_freq: 52.8024 (Std: 15.0866)
|
1193 |
+
Instr dry si_sdr: 11.9941 (Std: 6.6657)
|
1194 |
+
Instr other sdr: 6.5905 (Std: 3.3897)
|
1195 |
+
Instr other l1_freq: 52.0548 (Std: 13.5235)
|
1196 |
+
Instr other si_sdr: 5.7513 (Std: 3.4407)
|
1197 |
+
Metric avg sdr : 9.7151
|
1198 |
+
Metric avg l1_freq : 52.4286
|
1199 |
+
Metric avg si_sdr : 8.8727
|
1200 |
+
Train epoch: 109 Learning rate: 1.3622465051524595e-05
|
1201 |
+
Training loss: 0.097330
|
1202 |
+
Instr dry sdr: 12.9161 (Std: 4.7276)
|
1203 |
+
Instr dry l1_freq: 53.0033 (Std: 14.7825)
|
1204 |
+
Instr dry si_sdr: 12.2813 (Std: 5.8908)
|
1205 |
+
Instr other sdr: 6.6614 (Std: 3.2214)
|
1206 |
+
Instr other l1_freq: 52.2954 (Std: 13.1528)
|
1207 |
+
Instr other si_sdr: 5.8090 (Std: 3.3168)
|
1208 |
+
Metric avg sdr : 9.7888
|
1209 |
+
Metric avg l1_freq : 52.6493
|
1210 |
+
Metric avg si_sdr : 9.0452
|
1211 |
+
Train epoch: 110 Learning rate: 1.3622465051524595e-05
|
1212 |
+
Training loss: 0.093989
|
1213 |
+
Instr dry sdr: 13.0471 (Std: 4.5122)
|
1214 |
+
Instr dry l1_freq: 53.2873 (Std: 14.2572)
|
1215 |
+
Instr dry si_sdr: 12.5396 (Std: 5.3434)
|
1216 |
+
Instr other sdr: 6.7939 (Std: 2.9733)
|
1217 |
+
Instr other l1_freq: 52.7643 (Std: 12.6462)
|
1218 |
+
Instr other si_sdr: 5.9262 (Std: 3.1305)
|
1219 |
+
Metric avg sdr : 9.9205
|
1220 |
+
Metric avg l1_freq : 53.0258
|
1221 |
+
Metric avg si_sdr : 9.2329
|
1222 |
+
Train epoch: 111 Learning rate: 1.3622465051524595e-05
|
1223 |
+
Training loss: 0.091716
|
1224 |
+
Instr dry sdr: 12.8921 (Std: 4.7097)
|
1225 |
+
Instr dry l1_freq: 53.0324 (Std: 14.7172)
|
1226 |
+
Instr dry si_sdr: 12.2804 (Std: 5.7996)
|
1227 |
+
Instr other sdr: 6.6447 (Std: 3.2111)
|
1228 |
+
Instr other l1_freq: 52.1832 (Std: 13.0902)
|
1229 |
+
Instr other si_sdr: 5.7832 (Std: 3.3266)
|
1230 |
+
Metric avg sdr : 9.7684
|
1231 |
+
Metric avg l1_freq : 52.6078
|
1232 |
+
Metric avg si_sdr : 9.0318
|
1233 |
+
Train epoch: 112 Learning rate: 1.2941341798948365e-05
|
1234 |
+
Training loss: 0.093010
|
1235 |
+
Instr dry sdr: 12.7339 (Std: 4.9894)
|
1236 |
+
Instr dry l1_freq: 52.5628 (Std: 15.2270)
|
1237 |
+
Instr dry si_sdr: 11.7856 (Std: 6.9943)
|
1238 |
+
Instr other sdr: 6.4929 (Std: 3.4961)
|
1239 |
+
Instr other l1_freq: 51.8127 (Std: 13.6453)
|
1240 |
+
Instr other si_sdr: 5.6540 (Std: 3.5220)
|
1241 |
+
Metric avg sdr : 9.6134
|
1242 |
+
Metric avg l1_freq : 52.1878
|
1243 |
+
Metric avg si_sdr : 8.7198
|
1244 |
+
Train epoch: 113 Learning rate: 1.2941341798948365e-05
|
1245 |
+
Training loss: 0.091633
|
1246 |
+
Instr dry sdr: 12.8765 (Std: 4.7889)
|
1247 |
+
Instr dry l1_freq: 52.9751 (Std: 14.8547)
|
1248 |
+
Instr dry si_sdr: 12.1655 (Std: 6.1935)
|
1249 |
+
Instr other sdr: 6.6291 (Std: 3.2774)
|
1250 |
+
Instr other l1_freq: 52.1851 (Std: 13.2451)
|
1251 |
+
Instr other si_sdr: 5.7841 (Std: 3.3589)
|
1252 |
+
Metric avg sdr : 9.7528
|
1253 |
+
Metric avg l1_freq : 52.5801
|
1254 |
+
Metric avg si_sdr : 8.9748
|
1255 |
+
Train epoch: 114 Learning rate: 1.2941341798948365e-05
|
1256 |
+
Training loss: 0.092634
|
1257 |
+
Instr dry sdr: 12.7374 (Std: 5.0415)
|
1258 |
+
Instr dry l1_freq: 52.4767 (Std: 15.2749)
|
1259 |
+
Instr dry si_sdr: 11.7247 (Std: 7.2032)
|
1260 |
+
Instr other sdr: 6.4891 (Std: 3.5588)
|
1261 |
+
Instr other l1_freq: 51.8537 (Std: 13.7385)
|
1262 |
+
Instr other si_sdr: 5.6611 (Std: 3.5587)
|
1263 |
+
Metric avg sdr : 9.6133
|
1264 |
+
Metric avg l1_freq : 52.1652
|
1265 |
+
Metric avg si_sdr : 8.6929
|
1266 |
+
Train epoch: 115 Learning rate: 1.2294274709000947e-05
|
1267 |
+
Training loss: 0.096644
|
1268 |
+
Instr dry sdr: 12.6075 (Std: 5.1926)
|
1269 |
+
Instr dry l1_freq: 52.0390 (Std: 15.4268)
|
1270 |
+
Instr dry si_sdr: 11.1788 (Std: 8.4648)
|
1271 |
+
Instr other sdr: 6.3639 (Std: 3.6876)
|
1272 |
+
Instr other l1_freq: 51.6923 (Std: 13.8963)
|
1273 |
+
Instr other si_sdr: 5.5344 (Std: 3.6760)
|
1274 |
+
Metric avg sdr : 9.4857
|
1275 |
+
Metric avg l1_freq : 51.8657
|
1276 |
+
Metric avg si_sdr : 8.3566
|
1277 |
+
Train epoch: 116 Learning rate: 1.2294274709000947e-05
|
1278 |
+
Training loss: 0.094321
|
1279 |
+
Instr dry sdr: 12.6282 (Std: 5.2046)
|
1280 |
+
Instr dry l1_freq: 52.0768 (Std: 15.4735)
|
1281 |
+
Instr dry si_sdr: 11.1439 (Std: 8.6633)
|
1282 |
+
Instr other sdr: 6.3837 (Std: 3.6983)
|
1283 |
+
Instr other l1_freq: 51.5680 (Std: 13.9084)
|
1284 |
+
Instr other si_sdr: 5.5586 (Std: 3.6887)
|
1285 |
+
Metric avg sdr : 9.5060
|
1286 |
+
Metric avg l1_freq : 51.8224
|
1287 |
+
Metric avg si_sdr : 8.3512
|
1288 |
+
Train epoch: 117 Learning rate: 1.2294274709000947e-05
|
1289 |
+
Training loss: 0.093851
|
1290 |
+
Instr dry sdr: 12.7273 (Std: 5.0907)
|
1291 |
+
Instr dry l1_freq: 52.3832 (Std: 15.3896)
|
1292 |
+
Instr dry si_sdr: 11.5779 (Std: 7.6525)
|
1293 |
+
Instr other sdr: 6.4779 (Std: 3.6006)
|
1294 |
+
Instr other l1_freq: 51.7455 (Std: 13.8349)
|
1295 |
+
Instr other si_sdr: 5.6541 (Std: 3.5949)
|
1296 |
+
Metric avg sdr : 9.6026
|
1297 |
+
Metric avg l1_freq : 52.0644
|
1298 |
+
Metric avg si_sdr : 8.6160
|
1299 |
+
Train epoch: 118 Learning rate: 1.1679560973550899e-05
|
1300 |
+
Training loss: 0.095892
|
1301 |
+
Instr dry sdr: 12.8512 (Std: 4.9712)
|
1302 |
+
Instr dry l1_freq: 52.6765 (Std: 15.2045)
|
1303 |
+
Instr dry si_sdr: 12.0067 (Std: 6.6730)
|
1304 |
+
Instr other sdr: 6.6058 (Std: 3.4656)
|
1305 |
+
Instr other l1_freq: 52.1678 (Std: 13.6668)
|
1306 |
+
Instr other si_sdr: 5.7832 (Std: 3.4873)
|
1307 |
+
Metric avg sdr : 9.7285
|
1308 |
+
Metric avg l1_freq : 52.4222
|
1309 |
+
Metric avg si_sdr : 8.8950
|
1310 |
+
Train epoch: 119 Learning rate: 1.1679560973550899e-05
|
1311 |
+
Training loss: 0.091460
|
1312 |
+
Instr dry sdr: 12.7908 (Std: 5.0447)
|
1313 |
+
Instr dry l1_freq: 52.5138 (Std: 15.2710)
|
1314 |
+
Instr dry si_sdr: 11.8395 (Std: 7.0315)
|
1315 |
+
Instr other sdr: 6.5475 (Std: 3.5367)
|
1316 |
+
Instr other l1_freq: 52.1575 (Std: 13.7656)
|
1317 |
+
Instr other si_sdr: 5.7225 (Std: 3.5484)
|
1318 |
+
Metric avg sdr : 9.6691
|
1319 |
+
Metric avg l1_freq : 52.3357
|
1320 |
+
Metric avg si_sdr : 8.7810
|
1321 |
+
Train epoch: 120 Learning rate: 1.1679560973550899e-05
|
1322 |
+
Training loss: 0.095307
|
1323 |
+
Instr dry sdr: 12.6581 (Std: 5.1660)
|
1324 |
+
Instr dry l1_freq: 52.2390 (Std: 15.4570)
|
1325 |
+
Instr dry si_sdr: 11.3697 (Std: 8.0572)
|
1326 |
+
Instr other sdr: 6.4173 (Std: 3.6589)
|
1327 |
+
Instr other l1_freq: 51.7268 (Std: 13.8933)
|
1328 |
+
Instr other si_sdr: 5.5903 (Std: 3.6538)
|
1329 |
+
Metric avg sdr : 9.5377
|
1330 |
+
Metric avg l1_freq : 51.9829
|
1331 |
+
Metric avg si_sdr : 8.4800
|
1332 |
+
Train epoch: 121 Learning rate: 1.1095582924873354e-05
|
1333 |
+
Training loss: 0.092688
|
1334 |
+
Instr dry sdr: 12.8339 (Std: 4.9952)
|
1335 |
+
Instr dry l1_freq: 52.7786 (Std: 15.2630)
|
1336 |
+
Instr dry si_sdr: 11.9348 (Std: 6.8469)
|
1337 |
+
Instr other sdr: 6.5914 (Std: 3.5119)
|
1338 |
+
Instr other l1_freq: 51.9780 (Std: 13.6690)
|
1339 |
+
Instr other si_sdr: 5.7741 (Std: 3.5316)
|
1340 |
+
Metric avg sdr : 9.7127
|
1341 |
+
Metric avg l1_freq : 52.3783
|
1342 |
+
Metric avg si_sdr : 8.8545
|
1343 |
+
Train epoch: 122 Learning rate: 1.1095582924873354e-05
|
1344 |
+
Training loss: 0.089389
|
1345 |
+
Instr dry sdr: 12.6868 (Std: 5.1543)
|
1346 |
+
Instr dry l1_freq: 52.2544 (Std: 15.4487)
|
1347 |
+
Instr dry si_sdr: 11.3596 (Std: 8.1785)
|
1348 |
+
Instr other sdr: 6.4391 (Std: 3.6619)
|
1349 |
+
Instr other l1_freq: 51.7883 (Std: 13.9304)
|
1350 |
+
Instr other si_sdr: 5.6145 (Std: 3.6520)
|
1351 |
+
Metric avg sdr : 9.5629
|
1352 |
+
Metric avg l1_freq : 52.0214
|
1353 |
+
Metric avg si_sdr : 8.4870
|
1354 |
+
Train epoch: 123 Learning rate: 1.1095582924873354e-05
|
1355 |
+
Training loss: 0.092695
|
1356 |
+
Instr dry sdr: 13.1334 (Std: 4.4033)
|
1357 |
+
Instr dry l1_freq: 53.5958 (Std: 13.9688)
|
1358 |
+
Instr dry si_sdr: 12.6618 (Std: 5.1663)
|
1359 |
+
Instr other sdr: 6.8817 (Std: 2.8615)
|
1360 |
+
Instr other l1_freq: 52.8812 (Std: 12.3821)
|
1361 |
+
Instr other si_sdr: 6.0108 (Std: 3.0557)
|
1362 |
+
Metric avg sdr : 10.0075
|
1363 |
+
Metric avg l1_freq : 53.2385
|
1364 |
+
Metric avg si_sdr : 9.3363
|
1365 |
+
Train epoch: 124 Learning rate: 1.0540803778629686e-05
|
1366 |
+
Training loss: 0.090865
|
1367 |
+
Instr dry sdr: 12.8815 (Std: 4.9351)
|
1368 |
+
Instr dry l1_freq: 52.8738 (Std: 15.1633)
|
1369 |
+
Instr dry si_sdr: 12.0065 (Std: 6.7775)
|
1370 |
+
Instr other sdr: 6.6391 (Std: 3.4489)
|
1371 |
+
Instr other l1_freq: 52.2346 (Std: 13.5820)
|
1372 |
+
Instr other si_sdr: 5.8236 (Std: 3.4771)
|
1373 |
+
Metric avg sdr : 9.7603
|
1374 |
+
Metric avg l1_freq : 52.5542
|
1375 |
+
Metric avg si_sdr : 8.9150
|
1376 |
+
Train epoch: 125 Learning rate: 1.0540803778629686e-05
|
1377 |
+
Training loss: 0.097932
|
1378 |
+
Instr dry sdr: 12.8245 (Std: 5.0095)
|
1379 |
+
Instr dry l1_freq: 52.7419 (Std: 15.3479)
|
1380 |
+
Instr dry si_sdr: 11.7842 (Std: 7.3198)
|
1381 |
+
Instr other sdr: 6.5780 (Std: 3.5360)
|
1382 |
+
Instr other l1_freq: 52.0653 (Std: 13.7986)
|
1383 |
+
Instr other si_sdr: 5.7681 (Std: 3.5339)
|
1384 |
+
Metric avg sdr : 9.7012
|
1385 |
+
Metric avg l1_freq : 52.4036
|
1386 |
+
Metric avg si_sdr : 8.7762
|
1387 |
+
Train epoch: 126 Learning rate: 1.0540803778629686e-05
|
1388 |
+
Training loss: 0.090215
|
1389 |
+
Instr dry sdr: 12.7792 (Std: 5.1109)
|
1390 |
+
Instr dry l1_freq: 52.4720 (Std: 15.4843)
|
1391 |
+
Instr dry si_sdr: 11.5726 (Std: 7.8367)
|
1392 |
+
Instr other sdr: 6.5294 (Std: 3.6304)
|
1393 |
+
Instr other l1_freq: 51.8799 (Std: 13.9584)
|
1394 |
+
Instr other si_sdr: 5.7211 (Std: 3.6152)
|
1395 |
+
Metric avg sdr : 9.6543
|
1396 |
+
Metric avg l1_freq : 52.1760
|
1397 |
+
Metric avg si_sdr : 8.6469
|
1398 |
+
Train epoch: 127 Learning rate: 1.0013763589698201e-05
|
1399 |
+
Training loss: 0.089430
|
1400 |
+
Instr dry sdr: 12.9886 (Std: 4.7834)
|
1401 |
+
Instr dry l1_freq: 53.1443 (Std: 14.8720)
|
1402 |
+
Instr dry si_sdr: 12.3267 (Std: 6.0204)
|
1403 |
+
Instr other sdr: 6.7426 (Std: 3.2993)
|
1404 |
+
Instr other l1_freq: 52.4058 (Std: 13.3023)
|
1405 |
+
Instr other si_sdr: 5.9186 (Std: 3.3788)
|
1406 |
+
Metric avg sdr : 9.8656
|
1407 |
+
Metric avg l1_freq : 52.7750
|
1408 |
+
Metric avg si_sdr : 9.1226
|
1409 |
+
Train epoch: 128 Learning rate: 1.0013763589698201e-05
|
1410 |
+
Training loss: 0.094312
|
1411 |
+
Instr dry sdr: 12.8587 (Std: 5.0473)
|
1412 |
+
Instr dry l1_freq: 52.7096 (Std: 15.3562)
|
1413 |
+
Instr dry si_sdr: 11.8176 (Std: 7.3272)
|
1414 |
+
Instr other sdr: 6.6173 (Std: 3.5731)
|
1415 |
+
Instr other l1_freq: 52.1558 (Std: 13.8513)
|
1416 |
+
Instr other si_sdr: 5.8106 (Std: 3.5761)
|
1417 |
+
Metric avg sdr : 9.7380
|
1418 |
+
Metric avg l1_freq : 52.4327
|
1419 |
+
Metric avg si_sdr : 8.8141
|
1420 |
+
Train epoch: 129 Learning rate: 1.0013763589698201e-05
|
1421 |
+
Training loss: 0.097339
|
1422 |
+
Instr dry sdr: 12.9453 (Std: 4.9302)
|
1423 |
+
Instr dry l1_freq: 52.9732 (Std: 15.1751)
|
1424 |
+
Instr dry si_sdr: 12.1253 (Std: 6.5995)
|
1425 |
+
Instr other sdr: 6.7016 (Std: 3.4517)
|
1426 |
+
Instr other l1_freq: 52.3808 (Std: 13.6101)
|
1427 |
+
Instr other si_sdr: 5.8944 (Std: 3.4824)
|
1428 |
+
Metric avg sdr : 9.8235
|
1429 |
+
Metric avg l1_freq : 52.6770
|
1430 |
+
Metric avg si_sdr : 9.0099
|
1431 |
+
Train epoch: 130 Learning rate: 9.513075410213291e-06
|
1432 |
+
Training loss: 0.093759
|
1433 |
+
Instr dry sdr: 12.6769 (Std: 5.1848)
|
1434 |
+
Instr dry l1_freq: 52.2604 (Std: 15.4905)
|
1435 |
+
Instr dry si_sdr: 11.2656 (Std: 8.4064)
|
1436 |
+
Instr other sdr: 6.4356 (Std: 3.7061)
|
1437 |
+
Instr other l1_freq: 51.7764 (Std: 13.9597)
|
1438 |
+
Instr other si_sdr: 5.6129 (Std: 3.6973)
|
1439 |
+
Metric avg sdr : 9.5563
|
1440 |
+
Metric avg l1_freq : 52.0184
|
1441 |
+
Metric avg si_sdr : 8.4393
|
1442 |
+
Train epoch: 131 Learning rate: 9.513075410213291e-06
|
1443 |
+
Training loss: 0.098356
|
1444 |
+
Instr dry sdr: 12.7425 (Std: 5.1650)
|
1445 |
+
Instr dry l1_freq: 52.4089 (Std: 15.4820)
|
1446 |
+
Instr dry si_sdr: 11.4501 (Std: 8.0911)
|
1447 |
+
Instr other sdr: 6.4990 (Std: 3.6775)
|
1448 |
+
Instr other l1_freq: 51.8683 (Std: 13.9575)
|
1449 |
+
Instr other si_sdr: 5.6862 (Std: 3.6691)
|
1450 |
+
Metric avg sdr : 9.6207
|
1451 |
+
Metric avg l1_freq : 52.1386
|
1452 |
+
Metric avg si_sdr : 8.5681
|
1453 |
+
Train epoch: 132 Learning rate: 9.513075410213291e-06
|
1454 |
+
Training loss: 0.095287
|
1455 |
+
Instr dry sdr: 12.4559 (Std: 5.4014)
|
1456 |
+
Instr dry l1_freq: 51.3773 (Std: 15.7209)
|
1457 |
+
Instr dry si_sdr: 10.6520 (Std: 9.5616)
|
1458 |
+
Instr other sdr: 6.2205 (Std: 3.8719)
|
1459 |
+
Instr other l1_freq: 51.2221 (Std: 14.0111)
|
1460 |
+
Instr other si_sdr: 5.3885 (Std: 3.8971)
|
1461 |
+
Metric avg sdr : 9.3382
|
1462 |
+
Metric avg l1_freq : 51.2997
|
1463 |
+
Metric avg si_sdr : 8.0202
|
1464 |
+
Train epoch: 133 Learning rate: 9.037421639702626e-06
|
1465 |
+
Training loss: 0.094915
|
1466 |
+
Instr dry sdr: 12.7138 (Std: 5.1674)
|
1467 |
+
Instr dry l1_freq: 52.4015 (Std: 15.4349)
|
1468 |
+
Instr dry si_sdr: 11.4121 (Std: 8.1166)
|
1469 |
+
Instr other sdr: 6.4753 (Std: 3.6846)
|
1470 |
+
Instr other l1_freq: 51.8321 (Std: 13.8875)
|
1471 |
+
Instr other si_sdr: 5.6583 (Std: 3.6783)
|
1472 |
+
Metric avg sdr : 9.5945
|
1473 |
+
Metric avg l1_freq : 52.1168
|
1474 |
+
Metric avg si_sdr : 8.5352
|
1475 |
+
Train epoch: 134 Learning rate: 9.037421639702626e-06
|
1476 |
+
Training loss: 0.096393
|
1477 |
+
Instr dry sdr: 12.7945 (Std: 5.1220)
|
1478 |
+
Instr dry l1_freq: 52.6010 (Std: 15.3983)
|
1479 |
+
Instr dry si_sdr: 11.6378 (Std: 7.6964)
|
1480 |
+
Instr other sdr: 6.5584 (Std: 3.6388)
|
1481 |
+
Instr other l1_freq: 51.9830 (Std: 13.8424)
|
1482 |
+
Instr other si_sdr: 5.7504 (Std: 3.6350)
|
1483 |
+
Metric avg sdr : 9.6764
|
1484 |
+
Metric avg l1_freq : 52.2920
|
1485 |
+
Metric avg si_sdr : 8.6941
|
1486 |
+
Train epoch: 135 Learning rate: 9.037421639702626e-06
|
1487 |
+
Training loss: 0.099597
|
1488 |
+
Instr dry sdr: 12.7919 (Std: 5.1178)
|
1489 |
+
Instr dry l1_freq: 52.5562 (Std: 15.4150)
|
1490 |
+
Instr dry si_sdr: 11.6321 (Std: 7.6935)
|
1491 |
+
Instr other sdr: 6.5530 (Std: 3.6320)
|
1492 |
+
Instr other l1_freq: 52.0400 (Std: 13.8747)
|
1493 |
+
Instr other si_sdr: 5.7409 (Std: 3.6274)
|
1494 |
+
Metric avg sdr : 9.6724
|
1495 |
+
Metric avg l1_freq : 52.2981
|
1496 |
+
Metric avg si_sdr : 8.6865
|
1497 |
+
Train epoch: 136 Learning rate: 8.585550557717495e-06
|
1498 |
+
Training loss: 0.090295
|
1499 |
+
Instr dry sdr: 12.8795 (Std: 4.9871)
|
1500 |
+
Instr dry l1_freq: 52.8569 (Std: 15.2440)
|
1501 |
+
Instr dry si_sdr: 11.9876 (Std: 6.8381)
|
1502 |
+
Instr other sdr: 6.6420 (Std: 3.5077)
|
1503 |
+
Instr other l1_freq: 52.2082 (Std: 13.6723)
|
1504 |
+
Instr other si_sdr: 5.8337 (Std: 3.5257)
|
1505 |
+
Metric avg sdr : 9.7607
|
1506 |
+
Metric avg l1_freq : 52.5326
|
1507 |
+
Metric avg si_sdr : 8.9106
|
1508 |
+
Train epoch: 137 Learning rate: 8.585550557717495e-06
|
1509 |
+
Training loss: 0.089884
|
1510 |
+
Instr dry sdr: 12.8850 (Std: 5.0298)
|
1511 |
+
Instr dry l1_freq: 52.7489 (Std: 15.2832)
|
1512 |
+
Instr dry si_sdr: 11.9058 (Std: 7.1376)
|
1513 |
+
Instr other sdr: 6.6479 (Std: 3.5415)
|
1514 |
+
Instr other l1_freq: 52.2620 (Std: 13.7692)
|
1515 |
+
Instr other si_sdr: 5.8442 (Std: 3.5491)
|
1516 |
+
Metric avg sdr : 9.7665
|
1517 |
+
Metric avg l1_freq : 52.5055
|
1518 |
+
Metric avg si_sdr : 8.8750
|
1519 |
+
Train epoch: 138 Learning rate: 8.585550557717495e-06
|
1520 |
+
Training loss: 0.088977
|
1521 |
+
Instr dry sdr: 12.9498 (Std: 4.8888)
|
1522 |
+
Instr dry l1_freq: 53.0007 (Std: 15.0386)
|
1523 |
+
Instr dry si_sdr: 12.1730 (Std: 6.4540)
|
1524 |
+
Instr other sdr: 6.7089 (Std: 3.3994)
|
1525 |
+
Instr other l1_freq: 52.4736 (Std: 13.5112)
|
1526 |
+
Instr other si_sdr: 5.8944 (Std: 3.4422)
|
1527 |
+
Metric avg sdr : 9.8294
|
1528 |
+
Metric avg l1_freq : 52.7371
|
1529 |
+
Metric avg si_sdr : 9.0337
|
1530 |
+
Train epoch: 139 Learning rate: 8.156273029831619e-06
|
1531 |
+
Training loss: 0.094878
|
1532 |
+
Instr dry sdr: 13.0263 (Std: 4.8388)
|
1533 |
+
Instr dry l1_freq: 53.2131 (Std: 14.9437)
|
1534 |
+
Instr dry si_sdr: 12.3148 (Std: 6.2340)
|
1535 |
+
Instr other sdr: 6.7840 (Std: 3.3348)
|
1536 |
+
Instr other l1_freq: 52.5629 (Std: 13.3594)
|
1537 |
+
Instr other si_sdr: 5.9767 (Std: 3.3971)
|
1538 |
+
Metric avg sdr : 9.9051
|
1539 |
+
Metric avg l1_freq : 52.8880
|
1540 |
+
Metric avg si_sdr : 9.1457
|
1541 |
+
Train epoch: 140 Learning rate: 8.156273029831619e-06
|
1542 |
+
Training loss: 0.095048
|
1543 |
+
Instr dry sdr: 13.0318 (Std: 4.7903)
|
1544 |
+
Instr dry l1_freq: 53.2220 (Std: 14.8110)
|
1545 |
+
Instr dry si_sdr: 12.3731 (Std: 6.0319)
|
1546 |
+
Instr other sdr: 6.7918 (Std: 3.2833)
|
1547 |
+
Instr other l1_freq: 52.5610 (Std: 13.2352)
|
1548 |
+
Instr other si_sdr: 5.9756 (Std: 3.3698)
|
1549 |
+
Metric avg sdr : 9.9118
|
1550 |
+
Metric avg l1_freq : 52.8915
|
1551 |
+
Metric avg si_sdr : 9.1744
|
1552 |
+
Train epoch: 141 Learning rate: 8.156273029831619e-06
|
1553 |
+
Training loss: 0.100407
|
1554 |
+
Instr dry sdr: 12.8483 (Std: 5.0633)
|
1555 |
+
Instr dry l1_freq: 52.7168 (Std: 15.3261)
|
1556 |
+
Instr dry si_sdr: 11.7780 (Std: 7.4301)
|
1557 |
+
Instr other sdr: 6.6118 (Std: 3.5896)
|
1558 |
+
Instr other l1_freq: 52.0975 (Std: 13.7927)
|
1559 |
+
Instr other si_sdr: 5.8122 (Std: 3.5883)
|
1560 |
+
Metric avg sdr : 9.7301
|
1561 |
+
Metric avg l1_freq : 52.4071
|
1562 |
+
Metric avg si_sdr : 8.7951
|
1563 |
+
Train epoch: 142 Learning rate: 7.748459378340037e-06
|
1564 |
+
Training loss: 0.098264
|
1565 |
+
Instr dry sdr: 12.9012 (Std: 5.0163)
|
1566 |
+
Instr dry l1_freq: 52.9055 (Std: 15.2636)
|
1567 |
+
Instr dry si_sdr: 11.9283 (Std: 7.1281)
|
1568 |
+
Instr other sdr: 6.6659 (Std: 3.5414)
|
1569 |
+
Instr other l1_freq: 52.2809 (Std: 13.7113)
|
1570 |
+
Instr other si_sdr: 5.8686 (Std: 3.5462)
|
1571 |
+
Metric avg sdr : 9.7835
|
1572 |
+
Metric avg l1_freq : 52.5932
|
1573 |
+
Metric avg si_sdr : 8.8984
|
1574 |
+
Train epoch: 143 Learning rate: 7.748459378340037e-06
|
1575 |
+
Training loss: 0.091402
|
1576 |
+
Instr dry sdr: 12.9116 (Std: 5.0022)
|
1577 |
+
Instr dry l1_freq: 52.9557 (Std: 15.2628)
|
1578 |
+
Instr dry si_sdr: 11.9703 (Std: 7.0275)
|
1579 |
+
Instr other sdr: 6.6674 (Std: 3.5289)
|
1580 |
+
Instr other l1_freq: 52.2054 (Std: 13.6955)
|
1581 |
+
Instr other si_sdr: 5.8712 (Std: 3.5378)
|
1582 |
+
Metric avg sdr : 9.7895
|
1583 |
+
Metric avg l1_freq : 52.5805
|
1584 |
+
Metric avg si_sdr : 8.9208
|
1585 |
+
Train epoch: 144 Learning rate: 7.748459378340037e-06
|
1586 |
+
Training loss: 0.094382
|
1587 |
+
Instr dry sdr: 12.9307 (Std: 4.9579)
|
1588 |
+
Instr dry l1_freq: 52.8868 (Std: 15.1344)
|
1589 |
+
Instr dry si_sdr: 12.0759 (Std: 6.7416)
|
1590 |
+
Instr other sdr: 6.6924 (Std: 3.4671)
|
1591 |
+
Instr other l1_freq: 52.4059 (Std: 13.6066)
|
1592 |
+
Instr other si_sdr: 5.8890 (Std: 3.4903)
|
1593 |
+
Metric avg sdr : 9.8116
|
1594 |
+
Metric avg l1_freq : 52.6464
|
1595 |
+
Metric avg si_sdr : 8.9825
|
1596 |
+
Train epoch: 145 Learning rate: 7.361036409423035e-06
|
1597 |
+
Training loss: 0.097014
|
1598 |
+
Instr dry sdr: 12.8796 (Std: 5.0266)
|
1599 |
+
Instr dry l1_freq: 52.7791 (Std: 15.2656)
|
1600 |
+
Instr dry si_sdr: 11.9162 (Std: 7.1001)
|
1601 |
+
Instr other sdr: 6.6454 (Std: 3.5405)
|
1602 |
+
Instr other l1_freq: 52.2561 (Std: 13.7232)
|
1603 |
+
Instr other si_sdr: 5.8467 (Std: 3.5463)
|
1604 |
+
Metric avg sdr : 9.7625
|
1605 |
+
Metric avg l1_freq : 52.5176
|
1606 |
+
Metric avg si_sdr : 8.8815
|
1607 |
+
Train epoch: 146 Learning rate: 7.361036409423035e-06
|
1608 |
+
Training loss: 0.090039
|
1609 |
+
Instr dry sdr: 12.9316 (Std: 4.9567)
|
1610 |
+
Instr dry l1_freq: 52.9859 (Std: 15.1807)
|
1611 |
+
Instr dry si_sdr: 12.0449 (Std: 6.8583)
|
1612 |
+
Instr other sdr: 6.6940 (Std: 3.4768)
|
1613 |
+
Instr other l1_freq: 52.3062 (Std: 13.5915)
|
1614 |
+
Instr other si_sdr: 5.8962 (Std: 3.4986)
|
1615 |
+
Metric avg sdr : 9.8128
|
1616 |
+
Metric avg l1_freq : 52.6460
|
1617 |
+
Metric avg si_sdr : 8.9706
|
1618 |
+
Train epoch: 147 Learning rate: 7.361036409423035e-06
|
1619 |
+
Training loss: 0.086740
|
1620 |
+
Instr dry sdr: 12.9175 (Std: 5.0477)
|
1621 |
+
Instr dry l1_freq: 52.8124 (Std: 15.3145)
|
1622 |
+
Instr dry si_sdr: 11.9079 (Std: 7.2653)
|
1623 |
+
Instr other sdr: 6.6818 (Std: 3.5602)
|
1624 |
+
Instr other l1_freq: 52.3869 (Std: 13.7973)
|
1625 |
+
Instr other si_sdr: 5.8909 (Std: 3.5586)
|
1626 |
+
Metric avg sdr : 9.7996
|
1627 |
+
Metric avg l1_freq : 52.5997
|
1628 |
+
Metric avg si_sdr : 8.8994
|
1629 |
+
Train epoch: 148 Learning rate: 6.992984588951883e-06
|
1630 |
+
Training loss: 0.093262
|
1631 |
+
Instr dry sdr: 12.9297 (Std: 4.9863)
|
1632 |
+
Instr dry l1_freq: 52.9437 (Std: 15.2206)
|
1633 |
+
Instr dry si_sdr: 12.0304 (Std: 6.8971)
|
1634 |
+
Instr other sdr: 6.6975 (Std: 3.4967)
|
1635 |
+
Instr other l1_freq: 52.3166 (Std: 13.6655)
|
1636 |
+
Instr other si_sdr: 5.9003 (Std: 3.5149)
|
1637 |
+
Metric avg sdr : 9.8136
|
1638 |
+
Metric avg l1_freq : 52.6301
|
1639 |
+
Metric avg si_sdr : 8.9654
|
1640 |
+
Train epoch: 149 Learning rate: 6.992984588951883e-06
|
1641 |
+
Training loss: 0.089209
|
1642 |
+
Instr dry sdr: 12.9448 (Std: 4.9485)
|
1643 |
+
Instr dry l1_freq: 52.9930 (Std: 15.1825)
|
1644 |
+
Instr dry si_sdr: 12.0571 (Std: 6.8559)
|
1645 |
+
Instr other sdr: 6.7064 (Std: 3.4694)
|
1646 |
+
Instr other l1_freq: 52.3082 (Std: 13.6207)
|
1647 |
+
Instr other si_sdr: 5.9045 (Std: 3.4973)
|
1648 |
+
Metric avg sdr : 9.8256
|
1649 |
+
Metric avg l1_freq : 52.6506
|
1650 |
+
Metric avg si_sdr : 8.9808
|
1651 |
+
Train epoch: 150 Learning rate: 6.992984588951883e-06
|
1652 |
+
Training loss: 0.091250
|
1653 |
+
Instr dry sdr: 13.0154 (Std: 4.8329)
|
1654 |
+
Instr dry l1_freq: 53.1560 (Std: 14.9594)
|
1655 |
+
Instr dry si_sdr: 12.2982 (Std: 6.2567)
|
1656 |
+
Instr other sdr: 6.7774 (Std: 3.3365)
|
1657 |
+
Instr other l1_freq: 52.5333 (Std: 13.4056)
|
1658 |
+
Instr other si_sdr: 5.9671 (Std: 3.4008)
|
1659 |
+
Metric avg sdr : 9.8964
|
1660 |
+
Metric avg l1_freq : 52.8446
|
1661 |
+
Metric avg si_sdr : 9.1326
|
1662 |
+
Train epoch: 151 Learning rate: 6.643335359504288e-06
|
1663 |
+
Training loss: 0.089285
|
1664 |
+
Instr dry sdr: 12.9558 (Std: 5.0116)
|
1665 |
+
Instr dry l1_freq: 52.8557 (Std: 15.2873)
|
1666 |
+
Instr dry si_sdr: 12.0446 (Std: 6.9359)
|
1667 |
+
Instr other sdr: 6.7192 (Std: 3.5214)
|
1668 |
+
Instr other l1_freq: 52.2718 (Std: 13.7646)
|
1669 |
+
Instr other si_sdr: 5.9287 (Std: 3.5342)
|
1670 |
+
Metric avg sdr : 9.8375
|
1671 |
+
Metric avg l1_freq : 52.5638
|
1672 |
+
Metric avg si_sdr : 8.9866
|
1673 |
+
Train epoch: 152 Learning rate: 6.643335359504288e-06
|
1674 |
+
Training loss: 0.093715
|
1675 |
+
Instr dry sdr: 12.8837 (Std: 5.0895)
|
1676 |
+
Instr dry l1_freq: 52.7785 (Std: 15.4209)
|
1677 |
+
Instr dry si_sdr: 11.8158 (Std: 7.4261)
|
1678 |
+
Instr other sdr: 6.6453 (Std: 3.6111)
|
1679 |
+
Instr other l1_freq: 52.1904 (Std: 13.9012)
|
1680 |
+
Instr other si_sdr: 5.8519 (Std: 3.6058)
|
1681 |
+
Metric avg sdr : 9.7645
|
1682 |
+
Metric avg l1_freq : 52.4845
|
1683 |
+
Metric avg si_sdr : 8.8338
|
1684 |
+
Train epoch: 153 Learning rate: 6.643335359504288e-06
|
1685 |
+
Training loss: 0.094634
|
1686 |
+
Instr dry sdr: 12.9221 (Std: 5.0286)
|
1687 |
+
Instr dry l1_freq: 52.7799 (Std: 15.3241)
|
1688 |
+
Instr dry si_sdr: 11.9359 (Std: 7.1872)
|
1689 |
+
Instr other sdr: 6.6838 (Std: 3.5465)
|
1690 |
+
Instr other l1_freq: 52.2104 (Std: 13.8029)
|
1691 |
+
Instr other si_sdr: 5.8925 (Std: 3.5535)
|
1692 |
+
Metric avg sdr : 9.8030
|
1693 |
+
Metric avg l1_freq : 52.4951
|
1694 |
+
Metric avg si_sdr : 8.9142
|
1695 |
+
Train epoch: 154 Learning rate: 6.311168591529074e-06
|
1696 |
+
Training loss: 0.090340
|
1697 |
+
Instr dry sdr: 12.5977 (Std: 5.3607)
|
1698 |
+
Instr dry l1_freq: 51.7653 (Std: 15.6438)
|
1699 |
+
Instr dry si_sdr: 10.8231 (Std: 9.5397)
|
1700 |
+
Instr other sdr: 6.3668 (Std: 3.8433)
|
1701 |
+
Instr other l1_freq: 51.4808 (Std: 14.0331)
|
1702 |
+
Instr other si_sdr: 5.5531 (Std: 3.8592)
|
1703 |
+
Metric avg sdr : 9.4822
|
1704 |
+
Metric avg l1_freq : 51.6231
|
1705 |
+
Metric avg si_sdr : 8.1881
|
1706 |
+
Train epoch: 155 Learning rate: 6.311168591529074e-06
|
1707 |
+
Training loss: 0.094673
|
1708 |
+
Instr dry sdr: 12.6857 (Std: 5.2910)
|
1709 |
+
Instr dry l1_freq: 52.0814 (Std: 15.5593)
|
1710 |
+
Instr dry si_sdr: 11.0689 (Std: 9.0954)
|
1711 |
+
Instr other sdr: 6.4517 (Std: 3.7781)
|
1712 |
+
Instr other l1_freq: 51.7817 (Std: 14.0336)
|
1713 |
+
Instr other si_sdr: 5.6439 (Std: 3.7786)
|
1714 |
+
Metric avg sdr : 9.5687
|
1715 |
+
Metric avg l1_freq : 51.9316
|
1716 |
+
Metric avg si_sdr : 8.3564
|
1717 |
+
Train epoch: 156 Learning rate: 6.311168591529074e-06
|
1718 |
+
Training loss: 0.097054
|
1719 |
+
Instr dry sdr: 12.8776 (Std: 5.1045)
|
1720 |
+
Instr dry l1_freq: 52.6716 (Std: 15.4472)
|
1721 |
+
Instr dry si_sdr: 11.7472 (Std: 7.6424)
|
1722 |
+
Instr other sdr: 6.6376 (Std: 3.6234)
|
1723 |
+
Instr other l1_freq: 52.1721 (Std: 13.9403)
|
1724 |
+
Instr other si_sdr: 5.8483 (Std: 3.6134)
|
1725 |
+
Metric avg sdr : 9.7576
|
1726 |
+
Metric avg l1_freq : 52.4218
|
1727 |
+
Metric avg si_sdr : 8.7978
|
1728 |
+
Train epoch: 157 Learning rate: 5.9956101619526196e-06
|
1729 |
+
Training loss: 0.086725
|
1730 |
+
Instr dry sdr: 12.7567 (Std: 5.1877)
|
1731 |
+
Instr dry l1_freq: 52.3955 (Std: 15.5117)
|
1732 |
+
Instr dry si_sdr: 11.3619 (Std: 8.4342)
|
1733 |
+
Instr other sdr: 6.5151 (Std: 3.7013)
|
1734 |
+
Instr other l1_freq: 51.9408 (Std: 13.9934)
|
1735 |
+
Instr other si_sdr: 5.7100 (Std: 3.6893)
|
1736 |
+
Metric avg sdr : 9.6359
|
1737 |
+
Metric avg l1_freq : 52.1681
|
1738 |
+
Metric avg si_sdr : 8.5360
|
1739 |
+
Train epoch: 158 Learning rate: 5.9956101619526196e-06
|
1740 |
+
Training loss: 0.088358
|
1741 |
+
Instr dry sdr: 12.8922 (Std: 5.0698)
|
1742 |
+
Instr dry l1_freq: 52.7622 (Std: 15.3663)
|
1743 |
+
Instr dry si_sdr: 11.8662 (Std: 7.3063)
|
1744 |
+
Instr other sdr: 6.6547 (Std: 3.5908)
|
1745 |
+
Instr other l1_freq: 52.2345 (Std: 13.8596)
|
1746 |
+
Instr other si_sdr: 5.8634 (Std: 3.5879)
|
1747 |
+
Metric avg sdr : 9.7735
|
1748 |
+
Metric avg l1_freq : 52.4984
|
1749 |
+
Metric avg si_sdr : 8.8648
|
1750 |
+
Train epoch: 159 Learning rate: 5.9956101619526196e-06
|
1751 |
+
Training loss: 0.095690
|
1752 |
+
Instr dry sdr: 12.8906 (Std: 5.0697)
|
1753 |
+
Instr dry l1_freq: 52.7371 (Std: 15.3624)
|
1754 |
+
Instr dry si_sdr: 11.8548 (Std: 7.3340)
|
1755 |
+
Instr other sdr: 6.6570 (Std: 3.5914)
|
1756 |
+
Instr other l1_freq: 52.2013 (Std: 13.8421)
|
1757 |
+
Instr other si_sdr: 5.8675 (Std: 3.5863)
|
1758 |
+
Metric avg sdr : 9.7738
|
1759 |
+
Metric avg l1_freq : 52.4692
|
1760 |
+
Metric avg si_sdr : 8.8611
|
1761 |
+
Train epoch: 160 Learning rate: 5.695829653854988e-06
|
1762 |
+
Training loss: 0.092579
|
1763 |
+
Instr dry sdr: 12.8544 (Std: 5.1251)
|
1764 |
+
Instr dry l1_freq: 52.6313 (Std: 15.4354)
|
1765 |
+
Instr dry si_sdr: 11.7075 (Std: 7.6726)
|
1766 |
+
Instr other sdr: 6.6202 (Std: 3.6433)
|
1767 |
+
Instr other l1_freq: 52.2660 (Std: 13.9422)
|
1768 |
+
Instr other si_sdr: 5.8278 (Std: 3.6284)
|
1769 |
+
Metric avg sdr : 9.7373
|
1770 |
+
Metric avg l1_freq : 52.4487
|
1771 |
+
Metric avg si_sdr : 8.7676
|
1772 |
+
Train epoch: 161 Learning rate: 5.695829653854988e-06
|
1773 |
+
Training loss: 0.097362
|
1774 |
+
Instr dry sdr: 12.9443 (Std: 5.0329)
|
1775 |
+
Instr dry l1_freq: 52.8741 (Std: 15.3065)
|
1776 |
+
Instr dry si_sdr: 11.9991 (Std: 7.0508)
|
1777 |
+
Instr other sdr: 6.7074 (Std: 3.5450)
|
1778 |
+
Instr other l1_freq: 52.4280 (Std: 13.8087)
|
1779 |
+
Instr other si_sdr: 5.9183 (Std: 3.5510)
|
1780 |
+
Metric avg sdr : 9.8259
|
1781 |
+
Metric avg l1_freq : 52.6510
|
1782 |
+
Metric avg si_sdr : 8.9587
|
1783 |
+
Train epoch: 162 Learning rate: 5.695829653854988e-06
|
1784 |
+
Training loss: 0.091346
|
1785 |
+
Instr dry sdr: 12.8804 (Std: 5.1055)
|
1786 |
+
Instr dry l1_freq: 52.7372 (Std: 15.4190)
|
1787 |
+
Instr dry si_sdr: 11.7930 (Std: 7.5043)
|
1788 |
+
Instr other sdr: 6.6422 (Std: 3.6245)
|
1789 |
+
Instr other l1_freq: 52.2196 (Std: 13.9112)
|
1790 |
+
Instr other si_sdr: 5.8524 (Std: 3.6164)
|
1791 |
+
Metric avg sdr : 9.7613
|
1792 |
+
Metric avg l1_freq : 52.4784
|
1793 |
+
Metric avg si_sdr : 8.8227
|
1794 |
+
Train epoch: 163 Learning rate: 5.411038171162238e-06
|
1795 |
+
Training loss: 0.091542
|
1796 |
+
Instr dry sdr: 12.8616 (Std: 5.1150)
|
1797 |
+
Instr dry l1_freq: 52.6565 (Std: 15.4280)
|
1798 |
+
Instr dry si_sdr: 11.7335 (Std: 7.6210)
|
1799 |
+
Instr other sdr: 6.6225 (Std: 3.6385)
|
1800 |
+
Instr other l1_freq: 52.1651 (Std: 13.9175)
|
1801 |
+
Instr other si_sdr: 5.8302 (Std: 3.6274)
|
1802 |
+
Metric avg sdr : 9.7421
|
1803 |
+
Metric avg l1_freq : 52.4108
|
1804 |
+
Metric avg si_sdr : 8.7819
|
1805 |
+
Train epoch: 164 Learning rate: 5.411038171162238e-06
|
1806 |
+
Training loss: 0.094600
|
1807 |
+
Instr dry sdr: 12.8673 (Std: 5.1267)
|
1808 |
+
Instr dry l1_freq: 52.6975 (Std: 15.4468)
|
1809 |
+
Instr dry si_sdr: 11.7171 (Std: 7.6899)
|
1810 |
+
Instr other sdr: 6.6311 (Std: 3.6509)
|
1811 |
+
Instr other l1_freq: 52.1967 (Std: 13.9381)
|
1812 |
+
Instr other si_sdr: 5.8418 (Std: 3.6379)
|
1813 |
+
Metric avg sdr : 9.7492
|
1814 |
+
Metric avg l1_freq : 52.4471
|
1815 |
+
Metric avg si_sdr : 8.7795
|
1816 |
+
Train epoch: 165 Learning rate: 5.411038171162238e-06
|
1817 |
+
Training loss: 0.097291
|
1818 |
+
Instr dry sdr: 13.0089 (Std: 4.9530)
|
1819 |
+
Instr dry l1_freq: 53.1224 (Std: 15.1908)
|
1820 |
+
Instr dry si_sdr: 12.2088 (Std: 6.5852)
|
1821 |
+
Instr other sdr: 6.7727 (Std: 3.4620)
|
1822 |
+
Instr other l1_freq: 52.4034 (Std: 13.6353)
|
1823 |
+
Instr other si_sdr: 5.9884 (Std: 3.4897)
|
1824 |
+
Metric avg sdr : 9.8908
|
1825 |
+
Metric avg l1_freq : 52.7629
|
1826 |
+
Metric avg si_sdr : 9.0986
|
1827 |
+
Train epoch: 166 Learning rate: 5.1404862626041264e-06
|
1828 |
+
Training loss: 0.094797
|
1829 |
+
Instr dry sdr: 13.0049 (Std: 4.9604)
|
1830 |
+
Instr dry l1_freq: 53.0771 (Std: 15.1746)
|
1831 |
+
Instr dry si_sdr: 12.2103 (Std: 6.5536)
|
1832 |
+
Instr other sdr: 6.7714 (Std: 3.4740)
|
1833 |
+
Instr other l1_freq: 52.4696 (Std: 13.6267)
|
1834 |
+
Instr other si_sdr: 5.9851 (Std: 3.5005)
|
1835 |
+
Metric avg sdr : 9.8881
|
1836 |
+
Metric avg l1_freq : 52.7734
|
1837 |
+
Metric avg si_sdr : 9.0977
|
1838 |
+
Train epoch: 167 Learning rate: 5.1404862626041264e-06
|
1839 |
+
Training loss: 0.100379
|
1840 |
+
Instr dry sdr: 12.9419 (Std: 5.0760)
|
1841 |
+
Instr dry l1_freq: 52.8755 (Std: 15.3623)
|
1842 |
+
Instr dry si_sdr: 11.9785 (Std: 7.1096)
|
1843 |
+
Instr other sdr: 6.7099 (Std: 3.5933)
|
1844 |
+
Instr other l1_freq: 52.3490 (Std: 13.8569)
|
1845 |
+
Instr other si_sdr: 5.9277 (Std: 3.5915)
|
1846 |
+
Metric avg sdr : 9.8259
|
1847 |
+
Metric avg l1_freq : 52.6122
|
1848 |
+
Metric avg si_sdr : 8.9531
|
1849 |
+
Train epoch: 168 Learning rate: 5.1404862626041264e-06
|
1850 |
+
Training loss: 0.097326
|
1851 |
+
Instr dry sdr: 12.8634 (Std: 5.1823)
|
1852 |
+
Instr dry l1_freq: 52.4627 (Std: 15.5339)
|
1853 |
+
Instr dry si_sdr: 11.6184 (Std: 7.9900)
|
1854 |
+
Instr other sdr: 6.6246 (Std: 3.6947)
|
1855 |
+
Instr other l1_freq: 52.0684 (Std: 14.0159)
|
1856 |
+
Instr other si_sdr: 5.8370 (Std: 3.6815)
|
1857 |
+
Metric avg sdr : 9.7440
|
1858 |
+
Metric avg l1_freq : 52.2656
|
1859 |
+
Metric avg si_sdr : 8.7277
|
1860 |
+
Train epoch: 169 Learning rate: 4.88346194947392e-06
|
1861 |
+
Training loss: 0.092164
|
1862 |
+
Instr dry sdr: 13.0002 (Std: 4.9702)
|
1863 |
+
Instr dry l1_freq: 52.9855 (Std: 15.2065)
|
1864 |
+
Instr dry si_sdr: 12.1563 (Std: 6.7287)
|
1865 |
+
Instr other sdr: 6.7648 (Std: 3.4724)
|
1866 |
+
Instr other l1_freq: 52.3790 (Std: 13.6860)
|
1867 |
+
Instr other si_sdr: 5.9752 (Std: 3.5019)
|
1868 |
+
Metric avg sdr : 9.8825
|
1869 |
+
Metric avg l1_freq : 52.6822
|
1870 |
+
Metric avg si_sdr : 9.0658
|
1871 |
+
Train epoch: 170 Learning rate: 4.88346194947392e-06
|
1872 |
+
Training loss: 0.093825
|
1873 |
+
Instr dry sdr: 13.0661 (Std: 4.8525)
|
1874 |
+
Instr dry l1_freq: 53.1495 (Std: 14.9630)
|
1875 |
+
Instr dry si_sdr: 12.3687 (Std: 6.2087)
|
1876 |
+
Instr other sdr: 6.8300 (Std: 3.3398)
|
1877 |
+
Instr other l1_freq: 52.6276 (Std: 13.4359)
|
1878 |
+
Instr other si_sdr: 6.0311 (Std: 3.4032)
|
1879 |
+
Metric avg sdr : 9.9481
|
1880 |
+
Metric avg l1_freq : 52.8886
|
1881 |
+
Metric avg si_sdr : 9.1999
|
1882 |
+
Train epoch: 171 Learning rate: 4.88346194947392e-06
|
1883 |
+
Training loss: 0.093724
|
1884 |
+
Instr dry sdr: 13.1031 (Std: 4.7939)
|
1885 |
+
Instr dry l1_freq: 53.2780 (Std: 14.8401)
|
1886 |
+
Instr dry si_sdr: 12.4540 (Std: 6.0211)
|
1887 |
+
Instr other sdr: 6.8673 (Std: 3.2787)
|
1888 |
+
Instr other l1_freq: 52.7146 (Std: 13.2905)
|
1889 |
+
Instr other si_sdr: 6.0661 (Std: 3.3589)
|
1890 |
+
Metric avg sdr : 9.9852
|
1891 |
+
Metric avg l1_freq : 52.9963
|
1892 |
+
Metric avg si_sdr : 9.2600
|
1893 |
+
Train epoch: 172 Learning rate: 4.639288852000224e-06
|
1894 |
+
Training loss: 0.092525
|
1895 |
+
Instr dry sdr: 12.9381 (Std: 4.9911)
|
1896 |
+
Instr dry l1_freq: 52.8903 (Std: 15.2267)
|
1897 |
+
Instr dry si_sdr: 12.0534 (Std: 6.8457)
|
1898 |
+
Instr other sdr: 6.7037 (Std: 3.5046)
|
1899 |
+
Instr other l1_freq: 52.3353 (Std: 13.6947)
|
1900 |
+
Instr other si_sdr: 5.9037 (Std: 3.5301)
|
1901 |
+
Metric avg sdr : 9.8209
|
1902 |
+
Metric avg l1_freq : 52.6128
|
1903 |
+
Metric avg si_sdr : 8.9786
|
1904 |
+
Train epoch: 173 Learning rate: 4.639288852000224e-06
|
1905 |
+
Training loss: 0.093124
|
1906 |
+
Instr dry sdr: 12.9824 (Std: 4.9425)
|
1907 |
+
Instr dry l1_freq: 52.9453 (Std: 15.1376)
|
1908 |
+
Instr dry si_sdr: 12.1760 (Std: 6.5795)
|
1909 |
+
Instr other sdr: 6.7494 (Std: 3.4530)
|
1910 |
+
Instr other l1_freq: 52.4448 (Std: 13.6078)
|
1911 |
+
Instr other si_sdr: 5.9532 (Std: 3.4866)
|
1912 |
+
Metric avg sdr : 9.8659
|
1913 |
+
Metric avg l1_freq : 52.6951
|
1914 |
+
Metric avg si_sdr : 9.0646
|
1915 |
+
Train epoch: 174 Learning rate: 4.639288852000224e-06
|
1916 |
+
Training loss: 0.097429
|
1917 |
+
Instr dry sdr: 12.8439 (Std: 5.1313)
|
1918 |
+
Instr dry l1_freq: 52.6034 (Std: 15.4667)
|
1919 |
+
Instr dry si_sdr: 11.7080 (Std: 7.6385)
|
1920 |
+
Instr other sdr: 6.6100 (Std: 3.6477)
|
1921 |
+
Instr other l1_freq: 52.0806 (Std: 13.9462)
|
1922 |
+
Instr other si_sdr: 5.8138 (Std: 3.6422)
|
1923 |
+
Metric avg sdr : 9.7269
|
1924 |
+
Metric avg l1_freq : 52.3420
|
1925 |
+
Metric avg si_sdr : 8.7609
|
1926 |
+
Train epoch: 175 Learning rate: 4.407324409400213e-06
|
1927 |
+
Training loss: 0.095886
|
1928 |
+
Instr dry sdr: 12.9012 (Std: 5.1151)
|
1929 |
+
Instr dry l1_freq: 52.6466 (Std: 15.4250)
|
1930 |
+
Instr dry si_sdr: 11.8163 (Std: 7.5033)
|
1931 |
+
Instr other sdr: 6.6675 (Std: 3.6232)
|
1932 |
+
Instr other l1_freq: 52.2440 (Std: 13.9307)
|
1933 |
+
Instr other si_sdr: 5.8780 (Std: 3.6207)
|
1934 |
+
Metric avg sdr : 9.7844
|
1935 |
+
Metric avg l1_freq : 52.4453
|
1936 |
+
Metric avg si_sdr : 8.8472
|
1937 |
+
Train epoch: 176 Learning rate: 4.407324409400213e-06
|
1938 |
+
Training loss: 0.098037
|
1939 |
+
Instr dry sdr: 12.9997 (Std: 4.9698)
|
1940 |
+
Instr dry l1_freq: 53.0118 (Std: 15.2028)
|
1941 |
+
Instr dry si_sdr: 12.1703 (Std: 6.6775)
|
1942 |
+
Instr other sdr: 6.7685 (Std: 3.4791)
|
1943 |
+
Instr other l1_freq: 52.4436 (Std: 13.6768)
|
1944 |
+
Instr other si_sdr: 5.9799 (Std: 3.5082)
|
1945 |
+
Metric avg sdr : 9.8841
|
1946 |
+
Metric avg l1_freq : 52.7277
|
1947 |
+
Metric avg si_sdr : 9.0751
|
1948 |
+
Train epoch: 177 Learning rate: 4.407324409400213e-06
|
1949 |
+
Training loss: 0.091857
|
1950 |
+
Instr dry sdr: 13.0062 (Std: 4.9606)
|
1951 |
+
Instr dry l1_freq: 52.9682 (Std: 15.1650)
|
1952 |
+
Instr dry si_sdr: 12.1977 (Std: 6.6035)
|
1953 |
+
Instr other sdr: 6.7729 (Std: 3.4661)
|
1954 |
+
Instr other l1_freq: 52.4945 (Std: 13.6502)
|
1955 |
+
Instr other si_sdr: 5.9841 (Std: 3.4967)
|
1956 |
+
Metric avg sdr : 9.8896
|
1957 |
+
Metric avg l1_freq : 52.7313
|
1958 |
+
Metric avg si_sdr : 9.0909
|
1959 |
+
Train epoch: 178 Learning rate: 4.1869581889302025e-06
|
1960 |
+
Training loss: 0.098096
|
1961 |
+
Instr dry sdr: 12.9103 (Std: 5.0752)
|
1962 |
+
Instr dry l1_freq: 52.7613 (Std: 15.3833)
|
1963 |
+
Instr dry si_sdr: 11.8924 (Std: 7.2792)
|
1964 |
+
Instr other sdr: 6.6783 (Std: 3.5937)
|
1965 |
+
Instr other l1_freq: 52.2686 (Std: 13.8729)
|
1966 |
+
Instr other si_sdr: 5.8899 (Std: 3.5947)
|
1967 |
+
Metric avg sdr : 9.7943
|
1968 |
+
Metric avg l1_freq : 52.5150
|
1969 |
+
Metric avg si_sdr : 8.8912
|
1970 |
+
Train epoch: 179 Learning rate: 4.1869581889302025e-06
|
1971 |
+
Training loss: 0.090818
|
1972 |
+
Instr dry sdr: 12.9573 (Std: 5.0339)
|
1973 |
+
Instr dry l1_freq: 52.8341 (Std: 15.3070)
|
1974 |
+
Instr dry si_sdr: 12.0437 (Std: 6.9474)
|
1975 |
+
Instr other sdr: 6.7252 (Std: 3.5486)
|
1976 |
+
Instr other l1_freq: 52.3729 (Std: 13.7904)
|
1977 |
+
Instr other si_sdr: 5.9393 (Std: 3.5573)
|
1978 |
+
Metric avg sdr : 9.8412
|
1979 |
+
Metric avg l1_freq : 52.6035
|
1980 |
+
Metric avg si_sdr : 8.9915
|
1981 |
+
Train epoch: 180 Learning rate: 4.1869581889302025e-06
|
1982 |
+
Training loss: 0.092787
|
1983 |
+
Instr dry sdr: 13.0645 (Std: 4.8733)
|
1984 |
+
Instr dry l1_freq: 53.1646 (Std: 15.0069)
|
1985 |
+
Instr dry si_sdr: 12.3598 (Std: 6.2420)
|
1986 |
+
Instr other sdr: 6.8317 (Std: 3.3670)
|
1987 |
+
Instr other l1_freq: 52.6292 (Std: 13.4452)
|
1988 |
+
Instr other si_sdr: 6.0409 (Std: 3.4202)
|
1989 |
+
Metric avg sdr : 9.9481
|
1990 |
+
Metric avg l1_freq : 52.8969
|
1991 |
+
Metric avg si_sdr : 9.2003
|
1992 |
+
Train epoch: 181 Learning rate: 3.977610279483693e-06
|
1993 |
+
Training loss: 0.098106
|
1994 |
+
Instr dry sdr: 13.0562 (Std: 4.8652)
|
1995 |
+
Instr dry l1_freq: 53.1336 (Std: 14.9775)
|
1996 |
+
Instr dry si_sdr: 12.3658 (Std: 6.1905)
|
1997 |
+
Instr other sdr: 6.8223 (Std: 3.3560)
|
1998 |
+
Instr other l1_freq: 52.5849 (Std: 13.4299)
|
1999 |
+
Instr other si_sdr: 6.0296 (Std: 3.4127)
|
2000 |
+
Metric avg sdr : 9.9393
|
2001 |
+
Metric avg l1_freq : 52.8593
|
2002 |
+
Metric avg si_sdr : 9.1977
|
2003 |
+
Train epoch: 182 Learning rate: 3.977610279483693e-06
|
2004 |
+
Training loss: 0.091860
|
2005 |
+
Instr dry sdr: 13.0554 (Std: 4.9438)
|
2006 |
+
Instr dry l1_freq: 53.0550 (Std: 15.1489)
|
2007 |
+
Instr dry si_sdr: 12.2779 (Std: 6.5097)
|
2008 |
+
Instr other sdr: 6.8257 (Std: 3.4539)
|
2009 |
+
Instr other l1_freq: 52.5838 (Std: 13.6336)
|
2010 |
+
Instr other si_sdr: 6.0443 (Std: 3.4877)
|
2011 |
+
Metric avg sdr : 9.9406
|
2012 |
+
Metric avg l1_freq : 52.8194
|
2013 |
+
Metric avg si_sdr : 9.1611
|
2014 |
+
Train epoch: 183 Learning rate: 3.977610279483693e-06
|
2015 |
+
Training loss: 0.093953
|
2016 |
+
Instr dry sdr: 13.0706 (Std: 4.9253)
|
2017 |
+
Instr dry l1_freq: 53.1449 (Std: 15.1201)
|
2018 |
+
Instr dry si_sdr: 12.3207 (Std: 6.4185)
|
2019 |
+
Instr other sdr: 6.8401 (Std: 3.4303)
|
2020 |
+
Instr other l1_freq: 52.6158 (Std: 13.5921)
|
2021 |
+
Instr other si_sdr: 6.0593 (Std: 3.4694)
|
2022 |
+
Metric avg sdr : 9.9554
|
2023 |
+
Metric avg l1_freq : 52.8804
|
2024 |
+
Metric avg si_sdr : 9.1900
|
2025 |
+
Train epoch: 184 Learning rate: 3.778729765509508e-06
|
2026 |
+
Training loss: 0.092398
|
2027 |
+
Instr dry sdr: 12.9325 (Std: 5.1393)
|
2028 |
+
Instr dry l1_freq: 52.6756 (Std: 15.4664)
|
2029 |
+
Instr dry si_sdr: 11.8159 (Std: 7.6263)
|
2030 |
+
Instr other sdr: 6.7009 (Std: 3.6478)
|
2031 |
+
Instr other l1_freq: 52.2670 (Std: 13.9723)
|
2032 |
+
Instr other si_sdr: 5.9239 (Std: 3.6360)
|
2033 |
+
Metric avg sdr : 9.8167
|
2034 |
+
Metric avg l1_freq : 52.4713
|
2035 |
+
Metric avg si_sdr : 8.8699
|
2036 |
+
Train epoch: 185 Learning rate: 3.778729765509508e-06
|
2037 |
+
Training loss: 0.096717
|
2038 |
+
Instr dry sdr: 13.0490 (Std: 4.9449)
|
2039 |
+
Instr dry l1_freq: 53.0591 (Std: 15.1325)
|
2040 |
+
Instr dry si_sdr: 12.2904 (Std: 6.4531)
|
2041 |
+
Instr other sdr: 6.8182 (Std: 3.4383)
|
2042 |
+
Instr other l1_freq: 52.6409 (Std: 13.6066)
|
2043 |
+
Instr other si_sdr: 6.0330 (Std: 3.4746)
|
2044 |
+
Metric avg sdr : 9.9336
|
2045 |
+
Metric avg l1_freq : 52.8500
|
2046 |
+
Metric avg si_sdr : 9.1617
|
2047 |
+
Train epoch: 186 Learning rate: 3.778729765509508e-06
|
2048 |
+
Training loss: 0.090671
|
2049 |
+
Instr dry sdr: 12.9600 (Std: 5.0693)
|
2050 |
+
Instr dry l1_freq: 52.8589 (Std: 15.3583)
|
2051 |
+
Instr dry si_sdr: 11.9827 (Std: 7.1793)
|
2052 |
+
Instr other sdr: 6.7297 (Std: 3.5853)
|
2053 |
+
Instr other l1_freq: 52.3399 (Std: 13.8491)
|
2054 |
+
Instr other si_sdr: 5.9496 (Std: 3.5872)
|
2055 |
+
Metric avg sdr : 9.8448
|
2056 |
+
Metric avg l1_freq : 52.5994
|
2057 |
+
Metric avg si_sdr : 8.9661
|
2058 |
+
Train epoch: 187 Learning rate: 3.5897932772340322e-06
|
2059 |
+
Training loss: 0.093142
|
2060 |
+
Instr dry sdr: 12.9661 (Std: 5.0599)
|
2061 |
+
Instr dry l1_freq: 52.8261 (Std: 15.3346)
|
2062 |
+
Instr dry si_sdr: 12.0146 (Std: 7.0952)
|
2063 |
+
Instr other sdr: 6.7368 (Std: 3.5686)
|
2064 |
+
Instr other l1_freq: 52.4203 (Std: 13.8399)
|
2065 |
+
Instr other si_sdr: 5.9544 (Std: 3.5748)
|
2066 |
+
Metric avg sdr : 9.8515
|
2067 |
+
Metric avg l1_freq : 52.6232
|
2068 |
+
Metric avg si_sdr : 8.9845
|
2069 |
+
Train epoch: 188 Learning rate: 3.5897932772340322e-06
|
2070 |
+
Training loss: 0.090606
|
2071 |
+
Instr dry sdr: 12.9711 (Std: 5.0377)
|
2072 |
+
Instr dry l1_freq: 52.8756 (Std: 15.3093)
|
2073 |
+
Instr dry si_sdr: 12.0522 (Std: 6.9833)
|
2074 |
+
Instr other sdr: 6.7401 (Std: 3.5500)
|
2075 |
+
Instr other l1_freq: 52.3409 (Std: 13.7953)
|
2076 |
+
Instr other si_sdr: 5.9555 (Std: 3.5622)
|
2077 |
+
Metric avg sdr : 9.8556
|
2078 |
+
Metric avg l1_freq : 52.6082
|
2079 |
+
Metric avg si_sdr : 9.0039
|
2080 |
+
Train epoch: 189 Learning rate: 3.5897932772340322e-06
|
2081 |
+
Training loss: 0.092085
|
2082 |
+
Instr dry sdr: 12.8997 (Std: 5.1578)
|
2083 |
+
Instr dry l1_freq: 52.5542 (Std: 15.4780)
|
2084 |
+
Instr dry si_sdr: 11.7110 (Std: 7.8564)
|
2085 |
+
Instr other sdr: 6.6677 (Std: 3.6722)
|
2086 |
+
Instr other l1_freq: 52.2427 (Std: 13.9940)
|
2087 |
+
Instr other si_sdr: 5.8874 (Std: 3.6602)
|
2088 |
+
Metric avg sdr : 9.7837
|
2089 |
+
Metric avg l1_freq : 52.3984
|
2090 |
+
Metric avg si_sdr : 8.7992
|
2091 |
+
Train epoch: 190 Learning rate: 3.4103036133723303e-06
|
2092 |
+
Training loss: 0.093211
|
2093 |
+
Instr dry sdr: 12.9938 (Std: 5.0237)
|
2094 |
+
Instr dry l1_freq: 52.8923 (Std: 15.2859)
|
2095 |
+
Instr dry si_sdr: 12.0941 (Std: 6.9351)
|
2096 |
+
Instr other sdr: 6.7622 (Std: 3.5370)
|
2097 |
+
Instr other l1_freq: 52.4834 (Std: 13.7856)
|
2098 |
+
Instr other si_sdr: 5.9802 (Std: 3.5492)
|
2099 |
+
Metric avg sdr : 9.8780
|
2100 |
+
Metric avg l1_freq : 52.6879
|
2101 |
+
Metric avg si_sdr : 9.0371
|
2102 |
+
Train epoch: 191 Learning rate: 3.4103036133723303e-06
|
2103 |
+
Training loss: 0.093054
|
2104 |
+
Instr dry sdr: 12.9460 (Std: 5.0873)
|
2105 |
+
Instr dry l1_freq: 52.7413 (Std: 15.3860)
|
2106 |
+
Instr dry si_sdr: 11.9249 (Std: 7.3263)
|
2107 |
+
Instr other sdr: 6.7154 (Std: 3.6001)
|
2108 |
+
Instr other l1_freq: 52.3403 (Std: 13.8921)
|
2109 |
+
Instr other si_sdr: 5.9341 (Std: 3.6000)
|
2110 |
+
Metric avg sdr : 9.8307
|
2111 |
+
Metric avg l1_freq : 52.5408
|
2112 |
+
Metric avg si_sdr : 8.9295
|
2113 |
+
Train epoch: 192 Learning rate: 3.4103036133723303e-06
|
2114 |
+
Training loss: 0.094299
|
2115 |
+
Instr dry sdr: 12.9910 (Std: 5.0396)
|
2116 |
+
Instr dry l1_freq: 52.9021 (Std: 15.3228)
|
2117 |
+
Instr dry si_sdr: 12.0614 (Std: 7.0331)
|
2118 |
+
Instr other sdr: 6.7601 (Std: 3.5478)
|
2119 |
+
Instr other l1_freq: 52.4129 (Std: 13.7910)
|
2120 |
+
Instr other si_sdr: 5.9815 (Std: 3.5567)
|
2121 |
+
Metric avg sdr : 9.8756
|
2122 |
+
Metric avg l1_freq : 52.6575
|
2123 |
+
Metric avg si_sdr : 9.0214
|
2124 |
+
Train epoch: 193 Learning rate: 3.2397884327037135e-06
|
2125 |
+
Training loss: 0.099640
|
2126 |
+
Instr dry sdr: 12.9444 (Std: 5.0973)
|
2127 |
+
Instr dry l1_freq: 52.7317 (Std: 15.4063)
|
2128 |
+
Instr dry si_sdr: 11.9180 (Std: 7.3313)
|
2129 |
+
Instr other sdr: 6.7131 (Std: 3.6097)
|
2130 |
+
Instr other l1_freq: 52.3779 (Std: 13.9158)
|
2131 |
+
Instr other si_sdr: 5.9322 (Std: 3.6066)
|
2132 |
+
Metric avg sdr : 9.8287
|
2133 |
+
Metric avg l1_freq : 52.5548
|
2134 |
+
Metric avg si_sdr : 8.9251
|
2135 |
+
Train epoch: 194 Learning rate: 3.2397884327037135e-06
|
2136 |
+
Training loss: 0.095810
|
2137 |
+
Instr dry sdr: 13.0026 (Std: 4.9771)
|
2138 |
+
Instr dry l1_freq: 53.0306 (Std: 15.2164)
|
2139 |
+
Instr dry si_sdr: 12.1626 (Std: 6.7231)
|
2140 |
+
Instr other sdr: 6.7734 (Std: 3.4885)
|
2141 |
+
Instr other l1_freq: 52.5501 (Std: 13.6774)
|
2142 |
+
Instr other si_sdr: 5.9869 (Std: 3.5131)
|
2143 |
+
Metric avg sdr : 9.8880
|
2144 |
+
Metric avg l1_freq : 52.7903
|
2145 |
+
Metric avg si_sdr : 9.0747
|
2146 |
+
Train epoch: 195 Learning rate: 3.2397884327037135e-06
|
2147 |
+
Training loss: 0.094791
|
2148 |
+
Instr dry sdr: 13.0254 (Std: 4.9660)
|
2149 |
+
Instr dry l1_freq: 53.1081 (Std: 15.2067)
|
2150 |
+
Instr dry si_sdr: 12.2018 (Std: 6.6747)
|
2151 |
+
Instr other sdr: 6.7945 (Std: 3.4757)
|
2152 |
+
Instr other l1_freq: 52.5520 (Std: 13.6617)
|
2153 |
+
Instr other si_sdr: 6.0107 (Std: 3.5039)
|
2154 |
+
Metric avg sdr : 9.9100
|
2155 |
+
Metric avg l1_freq : 52.8300
|
2156 |
+
Metric avg si_sdr : 9.1063
|
2157 |
+
Train epoch: 196 Learning rate: 3.077799011068528e-06
|
2158 |
+
Training loss: 0.094022
|
2159 |
+
Instr dry sdr: 12.9993 (Std: 5.0386)
|
2160 |
+
Instr dry l1_freq: 52.9897 (Std: 15.3230)
|
2161 |
+
Instr dry si_sdr: 12.0766 (Std: 7.0081)
|
2162 |
+
Instr other sdr: 6.7706 (Std: 3.5526)
|
2163 |
+
Instr other l1_freq: 52.5178 (Std: 13.8153)
|
2164 |
+
Instr other si_sdr: 5.9919 (Std: 3.5632)
|
2165 |
+
Metric avg sdr : 9.8849
|
2166 |
+
Metric avg l1_freq : 52.7538
|
2167 |
+
Metric avg si_sdr : 9.0343
|
2168 |
+
Train epoch: 197 Learning rate: 3.077799011068528e-06
|
2169 |
+
Training loss: 0.089808
|
2170 |
+
Instr dry sdr: 12.9030 (Std: 5.1382)
|
2171 |
+
Instr dry l1_freq: 52.6801 (Std: 15.4695)
|
2172 |
+
Instr dry si_sdr: 11.7579 (Std: 7.6938)
|
2173 |
+
Instr other sdr: 6.6722 (Std: 3.6608)
|
2174 |
+
Instr other l1_freq: 52.2401 (Std: 13.9689)
|
2175 |
+
Instr other si_sdr: 5.8911 (Std: 3.6494)
|
2176 |
+
Metric avg sdr : 9.7876
|
2177 |
+
Metric avg l1_freq : 52.4601
|
2178 |
+
Metric avg si_sdr : 8.8245
|
2179 |
+
Train epoch: 198 Learning rate: 3.077799011068528e-06
|
2180 |
+
Training loss: 0.096411
|
2181 |
+
Instr dry sdr: 12.9705 (Std: 5.0528)
|
2182 |
+
Instr dry l1_freq: 52.8596 (Std: 15.3333)
|
2183 |
+
Instr dry si_sdr: 12.0465 (Std: 6.9944)
|
2184 |
+
Instr other sdr: 6.7392 (Std: 3.5682)
|
2185 |
+
Instr other l1_freq: 52.4578 (Std: 13.8326)
|
2186 |
+
Instr other si_sdr: 5.9563 (Std: 3.5730)
|
2187 |
+
Metric avg sdr : 9.8548
|
2188 |
+
Metric avg l1_freq : 52.6587
|
2189 |
+
Metric avg si_sdr : 9.0014
|
2190 |
+
Train epoch: 199 Learning rate: 2.9239090605151014e-06
|
2191 |
+
Training loss: 0.089098
|
2192 |
+
Instr dry sdr: 12.9623 (Std: 5.0550)
|
2193 |
+
Instr dry l1_freq: 52.8382 (Std: 15.3452)
|
2194 |
+
Instr dry si_sdr: 12.0264 (Std: 7.0291)
|
2195 |
+
Instr other sdr: 6.7334 (Std: 3.5707)
|
2196 |
+
Instr other l1_freq: 52.3943 (Std: 13.8395)
|
2197 |
+
Instr other si_sdr: 5.9517 (Std: 3.5752)
|
2198 |
+
Metric avg sdr : 9.8479
|
2199 |
+
Metric avg l1_freq : 52.6162
|
2200 |
+
Metric avg si_sdr : 8.9891
|
2201 |
+
Train epoch: 200 Learning rate: 2.9239090605151014e-06
|
2202 |
+
Training loss: 0.098282
|
2203 |
+
Instr dry sdr: 13.0326 (Std: 4.9732)
|
2204 |
+
Instr dry l1_freq: 53.0502 (Std: 15.1913)
|
2205 |
+
Instr dry si_sdr: 12.2395 (Std: 6.5679)
|
2206 |
+
Instr other sdr: 6.8032 (Std: 3.4785)
|
2207 |
+
Instr other l1_freq: 52.5799 (Std: 13.6677)
|
2208 |
+
Instr other si_sdr: 6.0207 (Std: 3.5036)
|
2209 |
+
Metric avg sdr : 9.9179
|
2210 |
+
Metric avg l1_freq : 52.8151
|
2211 |
+
Metric avg si_sdr : 9.1301
|
2212 |
+
Train epoch: 201 Learning rate: 2.9239090605151014e-06
|
2213 |
+
Training loss: 0.087879
|
2214 |
+
Instr dry sdr: 12.9945 (Std: 5.0327)
|
2215 |
+
Instr dry l1_freq: 52.9379 (Std: 15.2901)
|
2216 |
+
Instr dry si_sdr: 12.1233 (Std: 6.8245)
|
2217 |
+
Instr other sdr: 6.7651 (Std: 3.5438)
|
2218 |
+
Instr other l1_freq: 52.4752 (Std: 13.7720)
|
2219 |
+
Instr other si_sdr: 5.9853 (Std: 3.5541)
|
2220 |
+
Metric avg sdr : 9.8798
|
2221 |
+
Metric avg l1_freq : 52.7065
|
2222 |
+
Metric avg si_sdr : 9.0543
|
2223 |
+
Train epoch: 202 Learning rate: 2.777713607489346e-06
|
2224 |
+
Training loss: 0.090894
|
2225 |
+
Instr dry sdr: 13.0100 (Std: 5.0205)
|
2226 |
+
Instr dry l1_freq: 52.9811 (Std: 15.2788)
|
2227 |
+
Instr dry si_sdr: 12.1530 (Std: 6.7770)
|
2228 |
+
Instr other sdr: 6.7815 (Std: 3.5375)
|
2229 |
+
Instr other l1_freq: 52.5304 (Std: 13.7598)
|
2230 |
+
Instr other si_sdr: 6.0045 (Std: 3.5471)
|
2231 |
+
Metric avg sdr : 9.8958
|
2232 |
+
Metric avg l1_freq : 52.7557
|
2233 |
+
Metric avg si_sdr : 9.0787
|
2234 |
+
Train epoch: 203 Learning rate: 2.777713607489346e-06
|
2235 |
+
Training loss: 0.088920
|
2236 |
+
Instr dry sdr: 13.0696 (Std: 4.9347)
|
2237 |
+
Instr dry l1_freq: 53.1452 (Std: 15.1341)
|
2238 |
+
Instr dry si_sdr: 12.3204 (Std: 6.4161)
|
2239 |
+
Instr other sdr: 6.8407 (Std: 3.4438)
|
2240 |
+
Instr other l1_freq: 52.6320 (Std: 13.5918)
|
2241 |
+
Instr other si_sdr: 6.0610 (Std: 3.4786)
|
2242 |
+
Metric avg sdr : 9.9551
|
2243 |
+
Metric avg l1_freq : 52.8886
|
2244 |
+
Metric avg si_sdr : 9.1907
|
2245 |
+
Train epoch: 204 Learning rate: 2.777713607489346e-06
|
2246 |
+
Training loss: 0.090892
|
2247 |
+
Instr dry sdr: 13.0883 (Std: 4.9306)
|
2248 |
+
Instr dry l1_freq: 53.1626 (Std: 15.1372)
|
2249 |
+
Instr dry si_sdr: 12.3271 (Std: 6.4656)
|
2250 |
+
Instr other sdr: 6.8572 (Std: 3.4362)
|
2251 |
+
Instr other l1_freq: 52.6256 (Std: 13.6013)
|
2252 |
+
Instr other si_sdr: 6.0819 (Std: 3.4702)
|
2253 |
+
Metric avg sdr : 9.9728
|
2254 |
+
Metric avg l1_freq : 52.8941
|
2255 |
+
Metric avg si_sdr : 9.2045
|
2256 |
+
Train epoch: 205 Learning rate: 2.6388279271148787e-06
|
2257 |
+
Training loss: 0.091701
|
2258 |
+
Instr dry sdr: 13.0661 (Std: 4.9780)
|
2259 |
+
Instr dry l1_freq: 53.1265 (Std: 15.2127)
|
2260 |
+
Instr dry si_sdr: 12.2558 (Std: 6.6377)
|
2261 |
+
Instr other sdr: 6.8350 (Std: 3.4867)
|
2262 |
+
Instr other l1_freq: 52.6264 (Std: 13.6752)
|
2263 |
+
Instr other si_sdr: 6.0612 (Std: 3.5109)
|
2264 |
+
Metric avg sdr : 9.9505
|
2265 |
+
Metric avg l1_freq : 52.8764
|
2266 |
+
Metric avg si_sdr : 9.1585
|
2267 |
+
Train epoch: 206 Learning rate: 2.6388279271148787e-06
|
2268 |
+
Training loss: 0.090879
|
2269 |
+
Instr dry sdr: 12.9585 (Std: 5.1246)
|
2270 |
+
Instr dry l1_freq: 52.7450 (Std: 15.4385)
|
2271 |
+
Instr dry si_sdr: 11.8962 (Std: 7.4500)
|
2272 |
+
Instr other sdr: 6.7270 (Std: 3.6377)
|
2273 |
+
Instr other l1_freq: 52.3973 (Std: 13.9477)
|
2274 |
+
Instr other si_sdr: 5.9538 (Std: 3.6284)
|
2275 |
+
Metric avg sdr : 9.8427
|
2276 |
+
Metric avg l1_freq : 52.5711
|
2277 |
+
Metric avg si_sdr : 8.9250
|
2278 |
+
Train epoch: 207 Learning rate: 2.6388279271148787e-06
|
2279 |
+
Training loss: 0.095157
|
2280 |
+
Instr dry sdr: 12.9809 (Std: 5.0754)
|
2281 |
+
Instr dry l1_freq: 52.8825 (Std: 15.3618)
|
2282 |
+
Instr dry si_sdr: 12.0220 (Std: 7.1175)
|
2283 |
+
Instr other sdr: 6.7499 (Std: 3.5911)
|
2284 |
+
Instr other l1_freq: 52.4251 (Std: 13.8466)
|
2285 |
+
Instr other si_sdr: 5.9755 (Std: 3.5914)
|
2286 |
+
Metric avg sdr : 9.8654
|
2287 |
+
Metric avg l1_freq : 52.6538
|
2288 |
+
Metric avg si_sdr : 8.9987
|
2289 |
+
Train epoch: 208 Learning rate: 2.5068865307591348e-06
|
2290 |
+
Training loss: 0.097233
|
2291 |
+
Instr dry sdr: 12.8730 (Std: 5.1897)
|
2292 |
+
Instr dry l1_freq: 52.4444 (Std: 15.5242)
|
2293 |
+
Instr dry si_sdr: 11.6652 (Std: 7.8875)
|
2294 |
+
Instr other sdr: 6.6421 (Std: 3.7050)
|
2295 |
+
Instr other l1_freq: 52.1159 (Std: 14.0080)
|
2296 |
+
Instr other si_sdr: 5.8584 (Std: 3.6978)
|
2297 |
+
Metric avg sdr : 9.7575
|
2298 |
+
Metric avg l1_freq : 52.2802
|
2299 |
+
Metric avg si_sdr : 8.7618
|
2300 |
+
Train epoch: 209 Learning rate: 2.5068865307591348e-06
|
2301 |
+
Training loss: 0.095122
|
2302 |
+
Instr dry sdr: 12.8892 (Std: 5.1783)
|
2303 |
+
Instr dry l1_freq: 52.5212 (Std: 15.5039)
|
2304 |
+
Instr dry si_sdr: 11.7113 (Std: 7.7958)
|
2305 |
+
Instr other sdr: 6.6589 (Std: 3.6976)
|
2306 |
+
Instr other l1_freq: 52.2186 (Std: 13.9996)
|
2307 |
+
Instr other si_sdr: 5.8758 (Std: 3.6899)
|
2308 |
+
Metric avg sdr : 9.7741
|
2309 |
+
Metric avg l1_freq : 52.3699
|
2310 |
+
Metric avg si_sdr : 8.7936
|
2311 |
+
Train epoch: 210 Learning rate: 2.5068865307591348e-06
|
2312 |
+
Training loss: 0.089211
|
2313 |
+
Instr dry sdr: 12.9099 (Std: 5.1559)
|
2314 |
+
Instr dry l1_freq: 52.5873 (Std: 15.4712)
|
2315 |
+
Instr dry si_sdr: 11.7934 (Std: 7.6123)
|
2316 |
+
Instr other sdr: 6.6795 (Std: 3.6688)
|
2317 |
+
Instr other l1_freq: 52.3068 (Std: 13.9848)
|
2318 |
+
Instr other si_sdr: 5.8986 (Std: 3.6603)
|
2319 |
+
Metric avg sdr : 9.7947
|
2320 |
+
Metric avg l1_freq : 52.4471
|
2321 |
+
Metric avg si_sdr : 8.8460
|
2322 |
+
Train epoch: 211 Learning rate: 2.381542204221178e-06
|
2323 |
+
Training loss: 0.089044
|
2324 |
+
Instr dry sdr: 12.9820 (Std: 5.0812)
|
2325 |
+
Instr dry l1_freq: 52.8154 (Std: 15.3662)
|
2326 |
+
Instr dry si_sdr: 12.0162 (Std: 7.1432)
|
2327 |
+
Instr other sdr: 6.7530 (Std: 3.5918)
|
2328 |
+
Instr other l1_freq: 52.4064 (Std: 13.8646)
|
2329 |
+
Instr other si_sdr: 5.9778 (Std: 3.5935)
|
2330 |
+
Metric avg sdr : 9.8675
|
2331 |
+
Metric avg l1_freq : 52.6109
|
2332 |
+
Metric avg si_sdr : 8.9970
|
2333 |
+
Train epoch: 212 Learning rate: 2.381542204221178e-06
|
2334 |
+
Training loss: 0.096083
|
2335 |
+
Instr dry sdr: 12.9687 (Std: 5.0974)
|
2336 |
+
Instr dry l1_freq: 52.7944 (Std: 15.3968)
|
2337 |
+
Instr dry si_sdr: 11.9689 (Std: 7.2526)
|
2338 |
+
Instr other sdr: 6.7396 (Std: 3.6083)
|
2339 |
+
Instr other l1_freq: 52.3940 (Std: 13.8941)
|
2340 |
+
Instr other si_sdr: 5.9640 (Std: 3.6065)
|
2341 |
+
Metric avg sdr : 9.8542
|
2342 |
+
Metric avg l1_freq : 52.5942
|
2343 |
+
Metric avg si_sdr : 8.9664
|
2344 |
+
Train epoch: 213 Learning rate: 2.381542204221178e-06
|
2345 |
+
Training loss: 0.090508
|
2346 |
+
Instr dry sdr: 12.9640 (Std: 5.1021)
|
2347 |
+
Instr dry l1_freq: 52.7599 (Std: 15.4043)
|
2348 |
+
Instr dry si_sdr: 11.9621 (Std: 7.2544)
|
2349 |
+
Instr other sdr: 6.7350 (Std: 3.6160)
|
2350 |
+
Instr other l1_freq: 52.3958 (Std: 13.9046)
|
2351 |
+
Instr other si_sdr: 5.9594 (Std: 3.6121)
|
2352 |
+
Metric avg sdr : 9.8495
|
2353 |
+
Metric avg l1_freq : 52.5779
|
2354 |
+
Metric avg si_sdr : 8.9608
|
2355 |
+
Train epoch: 214 Learning rate: 2.262465094010119e-06
|
2356 |
+
Training loss: 0.088221
|
2357 |
+
Instr dry sdr: 12.9630 (Std: 5.1008)
|
2358 |
+
Instr dry l1_freq: 52.7650 (Std: 15.3975)
|
2359 |
+
Instr dry si_sdr: 11.9661 (Std: 7.2363)
|
2360 |
+
Instr other sdr: 6.7336 (Std: 3.6175)
|
2361 |
+
Instr other l1_freq: 52.3711 (Std: 13.8972)
|
2362 |
+
Instr other si_sdr: 5.9574 (Std: 3.6153)
|
2363 |
+
Metric avg sdr : 9.8483
|
2364 |
+
Metric avg l1_freq : 52.5680
|
2365 |
+
Metric avg si_sdr : 8.9618
|
2366 |
+
Train epoch: 215 Learning rate: 2.262465094010119e-06
|
2367 |
+
Training loss: 0.094517
|
2368 |
+
Instr dry sdr: 12.9718 (Std: 5.1046)
|
2369 |
+
Instr dry l1_freq: 52.7098 (Std: 15.3992)
|
2370 |
+
Instr dry si_sdr: 11.9743 (Std: 7.2457)
|
2371 |
+
Instr other sdr: 6.7441 (Std: 3.6193)
|
2372 |
+
Instr other l1_freq: 52.4082 (Std: 13.9162)
|
2373 |
+
Instr other si_sdr: 5.9692 (Std: 3.6165)
|
2374 |
+
Metric avg sdr : 9.8580
|
2375 |
+
Metric avg l1_freq : 52.5590
|
2376 |
+
Metric avg si_sdr : 8.9718
|
2377 |
+
Train epoch: 216 Learning rate: 2.262465094010119e-06
|
2378 |
+
Training loss: 0.094498
|
2379 |
+
Instr dry sdr: 12.9965 (Std: 5.0813)
|
2380 |
+
Instr dry l1_freq: 52.8448 (Std: 15.3691)
|
2381 |
+
Instr dry si_sdr: 12.0471 (Std: 7.0910)
|
2382 |
+
Instr other sdr: 6.7677 (Std: 3.5996)
|
2383 |
+
Instr other l1_freq: 52.4100 (Std: 13.8670)
|
2384 |
+
Instr other si_sdr: 5.9949 (Std: 3.6015)
|
2385 |
+
Metric avg sdr : 9.8821
|
2386 |
+
Metric avg l1_freq : 52.6274
|
2387 |
+
Metric avg si_sdr : 9.0210
|
2388 |
+
Train epoch: 217 Learning rate: 2.1493418393096127e-06
|
2389 |
+
Training loss: 0.090574
|
2390 |
+
Instr dry sdr: 13.0157 (Std: 5.0651)
|
2391 |
+
Instr dry l1_freq: 52.8412 (Std: 15.3343)
|
2392 |
+
Instr dry si_sdr: 12.1058 (Std: 6.9677)
|
2393 |
+
Instr other sdr: 6.7868 (Std: 3.5797)
|
2394 |
+
Instr other l1_freq: 52.5147 (Std: 13.8538)
|
2395 |
+
Instr other si_sdr: 6.0139 (Std: 3.5843)
|
2396 |
+
Metric avg sdr : 9.9012
|
2397 |
+
Metric avg l1_freq : 52.6779
|
2398 |
+
Metric avg si_sdr : 9.0599
|
2399 |
+
Train epoch: 218 Learning rate: 2.1493418393096127e-06
|
2400 |
+
Training loss: 0.095987
|
2401 |
+
Instr dry sdr: 13.1272 (Std: 4.8777)
|
2402 |
+
Instr dry l1_freq: 53.2347 (Std: 14.9888)
|
2403 |
+
Instr dry si_sdr: 12.4565 (Std: 6.1439)
|
2404 |
+
Instr other sdr: 6.8968 (Std: 3.3798)
|
2405 |
+
Instr other l1_freq: 52.7438 (Std: 13.4634)
|
2406 |
+
Instr other si_sdr: 6.1177 (Std: 3.4341)
|
2407 |
+
Metric avg sdr : 10.0120
|
2408 |
+
Metric avg l1_freq : 52.9893
|
2409 |
+
Metric avg si_sdr : 9.2871
|
2410 |
+
Train epoch: 219 Learning rate: 2.1493418393096127e-06
|
2411 |
+
Training loss: 0.097191
|
2412 |
+
Instr dry sdr: 12.9955 (Std: 5.0869)
|
2413 |
+
Instr dry l1_freq: 52.8392 (Std: 15.3718)
|
2414 |
+
Instr dry si_sdr: 12.0471 (Std: 7.0882)
|
2415 |
+
Instr other sdr: 6.7699 (Std: 3.6042)
|
2416 |
+
Instr other l1_freq: 52.4275 (Std: 13.8716)
|
2417 |
+
Instr other si_sdr: 5.9983 (Std: 3.6054)
|
2418 |
+
Metric avg sdr : 9.8827
|
2419 |
+
Metric avg l1_freq : 52.6334
|
2420 |
+
Metric avg si_sdr : 9.0227
|
2421 |
+
Train epoch: 220 Learning rate: 2.041874747344132e-06
|
2422 |
+
Training loss: 0.090682
|
2423 |
+
Instr dry sdr: 13.0097 (Std: 5.0718)
|
2424 |
+
Instr dry l1_freq: 52.8619 (Std: 15.3403)
|
2425 |
+
Instr dry si_sdr: 12.0965 (Std: 6.9746)
|
2426 |
+
Instr other sdr: 6.7831 (Std: 3.5878)
|
2427 |
+
Instr other l1_freq: 52.5006 (Std: 13.8541)
|
2428 |
+
Instr other si_sdr: 6.0114 (Std: 3.5907)
|
2429 |
+
Metric avg sdr : 9.8964
|
2430 |
+
Metric avg l1_freq : 52.6813
|
2431 |
+
Metric avg si_sdr : 9.0540
|