Sucial commited on
Commit
f116a97
1 Parent(s): 2a939ec

Upload 10 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ examples/example_dry.wav filter=lfs diff=lfs merge=lfs -text
37
+ examples/example_other.wav filter=lfs diff=lfs merge=lfs -text
38
+ examples/example_raw.wav filter=lfs diff=lfs merge=lfs -text
config_dereverb-echo_mel_band_roformer.yaml ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ audio:
2
+ chunk_size: 352800
3
+ dim_f: 1024
4
+ dim_t: 801 # don't work (use in model)
5
+ hop_length: 441 # don't work (use in model)
6
+ n_fft: 2048
7
+ num_channels: 2
8
+ sample_rate: 44100
9
+ min_mean_abs: 0.000
10
+
11
+ model:
12
+ dim: 256
13
+ depth: 8
14
+ stereo: true
15
+ num_stems: 2
16
+ time_transformer_depth: 1
17
+ freq_transformer_depth: 1
18
+ linear_transformer_depth: 0
19
+ num_bands: 60
20
+ dim_head: 64
21
+ heads: 8
22
+ attn_dropout: 0.1
23
+ ff_dropout: 0.1
24
+ flash_attn: True
25
+ dim_freqs_in: 1025
26
+ sample_rate: 44100 # needed for mel filter bank from librosa
27
+ stft_n_fft: 2048
28
+ stft_hop_length: 441
29
+ stft_win_length: 2048
30
+ stft_normalized: False
31
+ mask_estimator_depth: 2
32
+ multi_stft_resolution_loss_weight: 1.0
33
+ multi_stft_resolutions_window_sizes: !!python/tuple
34
+ - 4096
35
+ - 2048
36
+ - 1024
37
+ - 512
38
+ - 256
39
+ multi_stft_hop_size: 147
40
+ multi_stft_normalized: False
41
+
42
+ training:
43
+ batch_size: 1
44
+ gradient_accumulation_steps: 8
45
+ grad_clip: 0
46
+ instruments:
47
+ - dry
48
+ - other
49
+ lr: 4.0e-05
50
+ patience: 2
51
+ reduce_factor: 0.95
52
+ target_instrument: null
53
+ num_epochs: 1000
54
+ num_steps: 1000
55
+ q: 0.95
56
+ coarse_loss_clip: true
57
+ ema_momentum: 0.999
58
+ optimizer: adam
59
+ other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental
60
+ use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true
61
+
62
+ augmentations:
63
+ enable: true # enable or disable all augmentations (to fast disable if needed)
64
+ loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max)
65
+ loudness_min: 0.5
66
+ loudness_max: 1.5
67
+ mixup: false # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3)
68
+ mixup_probs: !!python/tuple # 2 additional stems of the same type (1st with prob 0.2, 2nd with prob 0.02)
69
+ - 0.2
70
+ - 0.02
71
+ mixup_loudness_min: 0.5
72
+ mixup_loudness_max: 1.5
73
+
74
+ inference:
75
+ batch_size: 4
76
+ dim_t: 801
77
+ num_overlap: 4
dereverb-echo_mel_band_roformer_sdr_10.0169.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd2b737a394cfb80cd48cc9fcbaf89f5f4062f6b93066c2911617a06d8b7860a
3
+ size 835997896
examples/README.md ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ license: [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)
2
+
3
+ Example audios are from [TestableFred](https://space.bilibili.com/258080618)'s video: https://www.bilibili.com/video/BV1UZUpYGEwM
4
+
5
+ Before inputting it into the model for inference, the original audio was separated from the vocal and instrument using the `model_bs_roformer_ep_368_sdr_12.9628.ckpt` model.
examples/example_dry.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd4336e1aa539279591b8c59a4367cef6adc72a46c6356e93f8b572e80a0132c
3
+ size 3218824
examples/example_other.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb7f0787014754c0a08397ef6773143aa34653316276c51402b3fc442905eef0
3
+ size 3218824
examples/example_raw.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21d6b5f935dea3f3765539205e4fc5fd781fe17ed001b192ee45bf293771ab49
3
+ size 3508968
scripts/create_reverb_delay.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import librosa
4
+ import numpy as np
5
+ import soundfile as sf
6
+ from pedalboard import Pedalboard, Reverb, Delay, HighpassFilter, LowpassFilter
7
+ from random import uniform
8
+ from tqdm import tqdm
9
+
10
+
11
+ def random_effect(audio, sr):
12
+ reverb = Pedalboard([
13
+ Delay(
14
+ delay_seconds=uniform(0.001, 0.100),
15
+ feedback=0.0,
16
+ mix=1.0
17
+ ),
18
+ Reverb(
19
+ room_size=uniform(0.1, 0.8),
20
+ damping=uniform(0.1, 0.8),
21
+ wet_level=1.0,
22
+ dry_level=0.0,
23
+ width=uniform(0.6, 1.0)
24
+ ),
25
+ HighpassFilter(cutoff_frequency_hz=uniform(100, 1000)),
26
+ LowpassFilter(cutoff_frequency_hz=uniform(4000, 12000))
27
+ ])
28
+
29
+ delay = Pedalboard([
30
+ Delay(
31
+ delay_seconds=uniform(0.05, 0.500),
32
+ feedback=uniform(0.1, 0.5),
33
+ mix=1.0
34
+ ),
35
+ Reverb(
36
+ room_size=uniform(0.05, 0.3),
37
+ damping=uniform(0.1, 0.8),
38
+ wet_level=0.2,
39
+ dry_level=0.8,
40
+ width=uniform(0.6, 1.0)
41
+ ),
42
+ HighpassFilter(cutoff_frequency_hz=uniform(100, 1000)),
43
+ LowpassFilter(cutoff_frequency_hz=uniform(3000, 10000))
44
+ ])
45
+
46
+ effect = uniform(0.1, 0.4) * reverb(audio, sr) + uniform(0.1, 0.4) * delay(audio, sr)
47
+ mix = effect + audio
48
+
49
+ return mix, effect
50
+
51
+
52
+ if __name__ == '__main__':
53
+ argparser = argparse.ArgumentParser(description='Add random reverb and delay effects to an audio file.')
54
+ argparser.add_argument('-i', '--input_folder', type=str, default="train", help='Path to the input audio file.')
55
+ argparser.add_argument('-o', '--output_folder', type=str, default="dataset_train", help='Path to the output audio file.')
56
+ args = argparser.parse_args()
57
+
58
+ index = 1
59
+ sr = 44100
60
+ for file in tqdm(os.listdir(args.input_folder)):
61
+ try:
62
+ audio, _ = librosa.load(os.path.join(args.input_folder, file), sr=sr)
63
+ if len(audio.shape) == 1:
64
+ audio = np.stack([audio, audio], axis=1)
65
+ effect = random_effect(audio.T, sr)
66
+ except:
67
+ print(f"Failed to process file: {file}")
68
+ continue
69
+
70
+ os.makedirs(os.path.join(args.output_folder, str(index)), exist_ok=True)
71
+
72
+ sf.write(os.path.join(args.output_folder, str(index), "mixture.wav"), effect[0].T, sr, subtype='PCM_16')
73
+ sf.write(os.path.join(args.output_folder, str(index), "other.wav"), effect[1].T, sr, subtype='PCM_16')
74
+ sf.write(os.path.join(args.output_folder, str(index), "dry.wav"), audio, sr, subtype='PCM_16')
75
+
76
+ index += 1
scripts/start_tensorboard.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import os
3
+ import numpy as np
4
+ from tensorboardX import SummaryWriter
5
+
6
+ writer = SummaryWriter('runs/metrics_visualization')
7
+
8
+ epoch_pattern = re.compile(r'Train epoch: (\d+) Learning rate: ([\d.eE+-]+)')
9
+ training_loss_pattern = re.compile(r'Training loss: ([\d.]+)')
10
+ metric_pattern = re.compile(r'(\w+ \w+ \w+): ([\d.]+) \(Std: ([\d.]+)\)')
11
+ avg_metric_pattern = re.compile(r'Metric avg (\w+)\s+: ([\d.]+)')
12
+
13
+ data = {
14
+ 'common': {
15
+ 'learning_rate': [],
16
+ 'training_loss': []
17
+ },
18
+ 'dry': {
19
+ 'Instr dry sdr': [],
20
+ 'Instr dry l1_freq': [],
21
+ 'Instr dry si_sdr': []
22
+ },
23
+ 'other': {
24
+ 'Instr other sdr': [],
25
+ 'Instr other l1_freq': [],
26
+ 'Instr other si_sdr': []
27
+ },
28
+ 'avg': {
29
+ 'Metric avg sdr': [],
30
+ 'Metric avg l1_freq': [],
31
+ 'Metric avg si_sdr': []
32
+ }
33
+ }
34
+
35
+ std_data = {
36
+ 'dry': {key: [] for key in data['dry'].keys()},
37
+ 'other': {key: [] for key in data['other'].keys()}
38
+ }
39
+
40
+ with open(r'E:\AI\datasets\msst\train.log', 'r') as f:
41
+ epoch = -1
42
+ for line in f:
43
+ epoch_match = epoch_pattern.match(line)
44
+ if epoch_match:
45
+ epoch = int(epoch_match.group(1))
46
+ learning_rate = float(epoch_match.group(2))
47
+ data['common']['learning_rate'].append((epoch, learning_rate))
48
+ continue
49
+
50
+ training_loss_match = training_loss_pattern.match(line)
51
+ if training_loss_match:
52
+ training_loss = float(training_loss_match.group(1))
53
+ data['common']['training_loss'].append((epoch, training_loss))
54
+ continue
55
+
56
+ metric_match = metric_pattern.match(line)
57
+ if metric_match:
58
+ metric_name = metric_match.group(1)
59
+ metric_value = float(metric_match.group(2))
60
+ std_value = float(metric_match.group(3))
61
+
62
+ if metric_name in data['dry']:
63
+ data['dry'][metric_name].append((epoch, metric_value))
64
+ std_data['dry'][metric_name].append((epoch, std_value))
65
+ elif metric_name in data['other']:
66
+ data['other'][metric_name].append((epoch, metric_value))
67
+ std_data['other'][metric_name].append((epoch, std_value))
68
+ continue
69
+
70
+ avg_metric_match = avg_metric_pattern.match(line)
71
+ if avg_metric_match:
72
+ avg_metric_name = f'Metric avg {avg_metric_match.group(1)}'
73
+ avg_metric_value = float(avg_metric_match.group(2))
74
+ data['avg'][avg_metric_name].append((epoch, avg_metric_value))
75
+
76
+ for category, metrics in data.items():
77
+ for key, values in metrics.items():
78
+ category_path = f'{category}/{key.replace(" ", "_").lower()}'
79
+ for epoch, value in values:
80
+ writer.add_scalar(f'{category_path}', value, epoch)
81
+
82
+ for category, metrics in std_data.items():
83
+ for key, values in metrics.items():
84
+ category_path = f'{category}/{key.replace(" ", "_").lower()}_std'
85
+ for epoch, std in values:
86
+ writer.add_scalar(f'{category_path}', std, epoch)
87
+
88
+ writer.close()
89
+ os.system('tensorboard --logdir=runs')
tensorboard.png ADDED
train.log ADDED
@@ -0,0 +1,2431 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Train epoch: 0 Learning rate: 4e-05
2
+ Training loss: 0.112203
3
+ Instr dry sdr: 9.1842 (Std: 5.0694)
4
+ Instr dry l1_freq: 43.0502 (Std: 16.4433)
5
+ Instr dry si_sdr: 6.6879 (Std: 9.3848)
6
+ Instr other sdr: 2.7113 (Std: 2.9820)
7
+ Instr other l1_freq: 42.2600 (Std: 13.8038)
8
+ Instr other si_sdr: 0.9734 (Std: 2.9438)
9
+ Metric avg sdr : 5.9478
10
+ Metric avg l1_freq : 42.6551
11
+ Metric avg si_sdr : 3.8307
12
+ Train epoch: 1 Learning rate: 4e-05
13
+ Training loss: 0.108346
14
+ Instr dry sdr: 9.8077 (Std: 5.0427)
15
+ Instr dry l1_freq: 45.2016 (Std: 16.0011)
16
+ Instr dry si_sdr: 7.8796 (Std: 8.4374)
17
+ Instr other sdr: 3.2853 (Std: 3.0210)
18
+ Instr other l1_freq: 44.2322 (Std: 13.4866)
19
+ Instr other si_sdr: 1.6467 (Std: 3.0609)
20
+ Metric avg sdr : 6.5465
21
+ Metric avg l1_freq : 44.7169
22
+ Metric avg si_sdr : 4.7632
23
+ Train epoch: 2 Learning rate: 4e-05
24
+ Training loss: 0.111557
25
+ Instr dry sdr: 8.6600 (Std: 5.2673)
26
+ Instr dry l1_freq: 40.4967 (Std: 16.3782)
27
+ Instr dry si_sdr: 5.1406 (Std: 11.2339)
28
+ Instr other sdr: 2.2686 (Std: 3.3155)
29
+ Instr other l1_freq: 40.7998 (Std: 14.0537)
30
+ Instr other si_sdr: 0.5386 (Std: 3.2345)
31
+ Metric avg sdr : 5.4643
32
+ Metric avg l1_freq : 40.6482
33
+ Metric avg si_sdr : 2.8396
34
+ Train epoch: 3 Learning rate: 4e-05
35
+ Training loss: 0.104671
36
+ Instr dry sdr: 10.5112 (Std: 4.7450)
37
+ Instr dry l1_freq: 47.0243 (Std: 15.3385)
38
+ Instr dry si_sdr: 9.2583 (Std: 7.0059)
39
+ Instr other sdr: 3.9533 (Std: 2.9623)
40
+ Instr other l1_freq: 45.7660 (Std: 13.4354)
41
+ Instr other si_sdr: 2.4055 (Std: 3.0344)
42
+ Metric avg sdr : 7.2322
43
+ Metric avg l1_freq : 46.3951
44
+ Metric avg si_sdr : 5.8319
45
+ Train epoch: 4 Learning rate: 4e-05
46
+ Training loss: 0.108527
47
+ Instr dry sdr: 10.6624 (Std: 4.7885)
48
+ Instr dry l1_freq: 47.5591 (Std: 15.3929)
49
+ Instr dry si_sdr: 9.3465 (Std: 7.2948)
50
+ Instr other sdr: 4.1154 (Std: 3.0104)
51
+ Instr other l1_freq: 45.9004 (Std: 13.4133)
52
+ Instr other si_sdr: 2.6202 (Std: 3.0885)
53
+ Metric avg sdr : 7.3889
54
+ Metric avg l1_freq : 46.7298
55
+ Metric avg si_sdr : 5.9833
56
+ Train epoch: 5 Learning rate: 4e-05
57
+ Training loss: 0.107057
58
+ Instr dry sdr: 11.0292 (Std: 4.6336)
59
+ Instr dry l1_freq: 48.4740 (Std: 15.0574)
60
+ Instr dry si_sdr: 9.9518 (Std: 6.6424)
61
+ Instr other sdr: 4.4880 (Std: 2.9169)
62
+ Instr other l1_freq: 46.8940 (Std: 13.1882)
63
+ Instr other si_sdr: 3.0556 (Std: 3.0106)
64
+ Metric avg sdr : 7.7586
65
+ Metric avg l1_freq : 47.6840
66
+ Metric avg si_sdr : 6.5037
67
+ Train epoch: 6 Learning rate: 4e-05
68
+ Training loss: 0.102628
69
+ Instr dry sdr: 10.4956 (Std: 5.0565)
70
+ Instr dry l1_freq: 47.0258 (Std: 15.6716)
71
+ Instr dry si_sdr: 8.7730 (Std: 8.3461)
72
+ Instr other sdr: 4.0236 (Std: 3.1916)
73
+ Instr other l1_freq: 45.9433 (Std: 13.4968)
74
+ Instr other si_sdr: 2.6168 (Std: 3.2038)
75
+ Metric avg sdr : 7.2596
76
+ Metric avg l1_freq : 46.4846
77
+ Metric avg si_sdr : 5.6949
78
+ Train epoch: 7 Learning rate: 4e-05
79
+ Training loss: 0.102433
80
+ Instr dry sdr: 10.4234 (Std: 5.2507)
81
+ Instr dry l1_freq: 46.5551 (Std: 16.1208)
82
+ Instr dry si_sdr: 8.2495 (Std: 9.4586)
83
+ Instr other sdr: 3.9662 (Std: 3.3640)
84
+ Instr other l1_freq: 45.5177 (Std: 13.8393)
85
+ Instr other si_sdr: 2.6240 (Std: 3.3432)
86
+ Metric avg sdr : 7.1948
87
+ Metric avg l1_freq : 46.0364
88
+ Metric avg si_sdr : 5.4368
89
+ Train epoch: 8 Learning rate: 4e-05
90
+ Training loss: 0.102206
91
+ Instr dry sdr: 11.2823 (Std: 4.6485)
92
+ Instr dry l1_freq: 49.1632 (Std: 14.9530)
93
+ Instr dry si_sdr: 10.2208 (Std: 6.6984)
94
+ Instr other sdr: 4.7831 (Std: 2.9732)
95
+ Instr other l1_freq: 47.7291 (Std: 13.1676)
96
+ Instr other si_sdr: 3.4409 (Std: 3.0674)
97
+ Metric avg sdr : 8.0327
98
+ Metric avg l1_freq : 48.4461
99
+ Metric avg si_sdr : 6.8308
100
+ Train epoch: 9 Learning rate: 4e-05
101
+ Training loss: 0.102105
102
+ Instr dry sdr: 9.8860 (Std: 5.7882)
103
+ Instr dry l1_freq: 44.9209 (Std: 17.4682)
104
+ Instr dry si_sdr: 6.8763 (Std: 10.9794)
105
+ Instr other sdr: 3.4941 (Std: 3.7512)
106
+ Instr other l1_freq: 44.9048 (Std: 14.8870)
107
+ Instr other si_sdr: 2.3025 (Std: 3.5580)
108
+ Metric avg sdr : 6.6900
109
+ Metric avg l1_freq : 44.9128
110
+ Metric avg si_sdr : 4.5894
111
+ Train epoch: 10 Learning rate: 4e-05
112
+ Training loss: 0.105466
113
+ Instr dry sdr: 10.6825 (Std: 5.4309)
114
+ Instr dry l1_freq: 47.1887 (Std: 16.3474)
115
+ Instr dry si_sdr: 8.5463 (Std: 9.5558)
116
+ Instr other sdr: 4.2599 (Std: 3.5437)
117
+ Instr other l1_freq: 46.4425 (Std: 13.9931)
118
+ Instr other si_sdr: 3.0562 (Std: 3.5099)
119
+ Metric avg sdr : 7.4712
120
+ Metric avg l1_freq : 46.8156
121
+ Metric avg si_sdr : 5.8013
122
+ Train epoch: 11 Learning rate: 4e-05
123
+ Training loss: 0.102414
124
+ Instr dry sdr: 9.6486 (Std: 5.9472)
125
+ Instr dry l1_freq: 44.1544 (Std: 18.0469)
126
+ Instr dry si_sdr: 6.1325 (Std: 11.8517)
127
+ Instr other sdr: 3.3058 (Std: 3.8984)
128
+ Instr other l1_freq: 43.9748 (Std: 15.1864)
129
+ Instr other si_sdr: 2.1583 (Std: 3.6656)
130
+ Metric avg sdr : 6.4772
131
+ Metric avg l1_freq : 44.0646
132
+ Metric avg si_sdr : 4.1454
133
+ Train epoch: 12 Learning rate: 3.8e-05
134
+ Training loss: 0.102746
135
+ Instr dry sdr: 11.2203 (Std: 4.7064)
136
+ Instr dry l1_freq: 49.1167 (Std: 15.4703)
137
+ Instr dry si_sdr: 9.9747 (Std: 7.3762)
138
+ Instr other sdr: 4.8413 (Std: 3.0495)
139
+ Instr other l1_freq: 47.1270 (Std: 13.4432)
140
+ Instr other si_sdr: 3.5202 (Std: 3.1601)
141
+ Metric avg sdr : 8.0308
142
+ Metric avg l1_freq : 48.1219
143
+ Metric avg si_sdr : 6.7475
144
+ Train epoch: 13 Learning rate: 3.8e-05
145
+ Training loss: 0.098055
146
+ Instr dry sdr: 11.4479 (Std: 4.6584)
147
+ Instr dry l1_freq: 49.8237 (Std: 15.2150)
148
+ Instr dry si_sdr: 10.2828 (Std: 7.2318)
149
+ Instr other sdr: 5.0567 (Std: 3.0666)
150
+ Instr other l1_freq: 47.9391 (Std: 13.2528)
151
+ Instr other si_sdr: 3.8100 (Std: 3.1556)
152
+ Metric avg sdr : 8.2523
153
+ Metric avg l1_freq : 48.8814
154
+ Metric avg si_sdr : 7.0464
155
+ Train epoch: 14 Learning rate: 3.8e-05
156
+ Training loss: 0.098851
157
+ Instr dry sdr: 11.2437 (Std: 4.4635)
158
+ Instr dry l1_freq: 48.9190 (Std: 14.9174)
159
+ Instr dry si_sdr: 10.0969 (Std: 7.1745)
160
+ Instr other sdr: 4.8748 (Std: 2.9083)
161
+ Instr other l1_freq: 47.2522 (Std: 13.2537)
162
+ Instr other si_sdr: 3.4444 (Std: 3.1525)
163
+ Metric avg sdr : 8.0592
164
+ Metric avg l1_freq : 48.0856
165
+ Metric avg si_sdr : 6.7706
166
+ Train epoch: 15 Learning rate: 3.8e-05
167
+ Training loss: 0.100223
168
+ Instr dry sdr: 11.8901 (Std: 3.8317)
169
+ Instr dry l1_freq: 51.2161 (Std: 12.9691)
170
+ Instr dry si_sdr: 11.2922 (Std: 5.1277)
171
+ Instr other sdr: 5.5019 (Std: 2.2995)
172
+ Instr other l1_freq: 48.7933 (Std: 11.9829)
173
+ Instr other si_sdr: 4.1441 (Std: 2.6947)
174
+ Metric avg sdr : 8.6960
175
+ Metric avg l1_freq : 50.0047
176
+ Metric avg si_sdr : 7.7181
177
+ Train epoch: 16 Learning rate: 3.8e-05
178
+ Training loss: 0.104321
179
+ Instr dry sdr: 11.9911 (Std: 3.9050)
180
+ Instr dry l1_freq: 51.5090 (Std: 13.0993)
181
+ Instr dry si_sdr: 11.3194 (Std: 5.4409)
182
+ Instr other sdr: 5.5892 (Std: 2.4072)
183
+ Instr other l1_freq: 49.2916 (Std: 11.9865)
184
+ Instr other si_sdr: 4.2758 (Std: 2.7573)
185
+ Metric avg sdr : 8.7901
186
+ Metric avg l1_freq : 50.4003
187
+ Metric avg si_sdr : 7.7976
188
+ Train epoch: 17 Learning rate: 3.8e-05
189
+ Training loss: 0.101089
190
+ Instr dry sdr: 11.3998 (Std: 4.4243)
191
+ Instr dry l1_freq: 49.5020 (Std: 14.6672)
192
+ Instr dry si_sdr: 10.2264 (Std: 7.2563)
193
+ Instr other sdr: 5.0164 (Std: 2.9508)
194
+ Instr other l1_freq: 47.8112 (Std: 13.1082)
195
+ Instr other si_sdr: 3.6554 (Std: 3.1220)
196
+ Metric avg sdr : 8.2081
197
+ Metric avg l1_freq : 48.6566
198
+ Metric avg si_sdr : 6.9409
199
+ Train epoch: 18 Learning rate: 3.8e-05
200
+ Training loss: 0.104896
201
+ Instr dry sdr: 11.8436 (Std: 4.2132)
202
+ Instr dry l1_freq: 50.8741 (Std: 13.9037)
203
+ Instr dry si_sdr: 10.9560 (Std: 6.3993)
204
+ Instr other sdr: 5.4496 (Std: 2.7765)
205
+ Instr other l1_freq: 49.0518 (Std: 12.5874)
206
+ Instr other si_sdr: 4.1728 (Std: 2.9902)
207
+ Metric avg sdr : 8.6466
208
+ Metric avg l1_freq : 49.9630
209
+ Metric avg si_sdr : 7.5644
210
+ Train epoch: 19 Learning rate: 3.8e-05
211
+ Training loss: 0.102872
212
+ Instr dry sdr: 11.6119 (Std: 4.4405)
213
+ Instr dry l1_freq: 50.0832 (Std: 14.4807)
214
+ Instr dry si_sdr: 10.3961 (Std: 7.4146)
215
+ Instr other sdr: 5.2438 (Std: 2.9718)
216
+ Instr other l1_freq: 48.5173 (Std: 12.9634)
217
+ Instr other si_sdr: 3.9460 (Std: 3.1250)
218
+ Metric avg sdr : 8.4278
219
+ Metric avg l1_freq : 49.3003
220
+ Metric avg si_sdr : 7.1711
221
+ Train epoch: 20 Learning rate: 3.61e-05
222
+ Training loss: 0.103917
223
+ Instr dry sdr: 11.8600 (Std: 4.3186)
224
+ Instr dry l1_freq: 50.7067 (Std: 14.1043)
225
+ Instr dry si_sdr: 10.8580 (Std: 6.8196)
226
+ Instr other sdr: 5.4763 (Std: 2.8551)
227
+ Instr other l1_freq: 49.0513 (Std: 12.7018)
228
+ Instr other si_sdr: 4.2312 (Std: 3.0315)
229
+ Metric avg sdr : 8.6681
230
+ Metric avg l1_freq : 49.8790
231
+ Metric avg si_sdr : 7.5446
232
+ Train epoch: 21 Learning rate: 3.61e-05
233
+ Training loss: 0.099953
234
+ Instr dry sdr: 11.6488 (Std: 4.4892)
235
+ Instr dry l1_freq: 50.1608 (Std: 14.5906)
236
+ Instr dry si_sdr: 10.4241 (Std: 7.4959)
237
+ Instr other sdr: 5.2680 (Std: 2.9869)
238
+ Instr other l1_freq: 48.7911 (Std: 12.9553)
239
+ Instr other si_sdr: 3.9999 (Std: 3.1246)
240
+ Metric avg sdr : 8.4584
241
+ Metric avg l1_freq : 49.4760
242
+ Metric avg si_sdr : 7.2120
243
+ Train epoch: 22 Learning rate: 3.61e-05
244
+ Training loss: 0.106623
245
+ Instr dry sdr: 11.4431 (Std: 4.5723)
246
+ Instr dry l1_freq: 49.5066 (Std: 14.8685)
247
+ Instr dry si_sdr: 10.0020 (Std: 8.1887)
248
+ Instr other sdr: 5.0968 (Std: 3.0595)
249
+ Instr other l1_freq: 48.0954 (Std: 13.1793)
250
+ Instr other si_sdr: 3.8148 (Std: 3.1874)
251
+ Metric avg sdr : 8.2699
252
+ Metric avg l1_freq : 48.8010
253
+ Metric avg si_sdr : 6.9084
254
+ Train epoch: 23 Learning rate: 3.4295e-05
255
+ Training loss: 0.102432
256
+ Instr dry sdr: 11.7803 (Std: 4.5411)
257
+ Instr dry l1_freq: 50.1692 (Std: 14.6833)
258
+ Instr dry si_sdr: 10.4433 (Std: 7.9273)
259
+ Instr other sdr: 5.4089 (Std: 3.0554)
260
+ Instr other l1_freq: 48.6791 (Std: 13.1322)
261
+ Instr other si_sdr: 4.2015 (Std: 3.1739)
262
+ Metric avg sdr : 8.5946
263
+ Metric avg l1_freq : 49.4242
264
+ Metric avg si_sdr : 7.3224
265
+ Train epoch: 24 Learning rate: 3.4295e-05
266
+ Training loss: 0.099989
267
+ Instr dry sdr: 11.8416 (Std: 4.5566)
268
+ Instr dry l1_freq: 50.3986 (Std: 14.6825)
269
+ Instr dry si_sdr: 10.4740 (Std: 8.0559)
270
+ Instr other sdr: 5.4663 (Std: 3.0807)
271
+ Instr other l1_freq: 49.1233 (Std: 13.1509)
272
+ Instr other si_sdr: 4.2740 (Std: 3.1957)
273
+ Metric avg sdr : 8.6540
274
+ Metric avg l1_freq : 49.7609
275
+ Metric avg si_sdr : 7.3740
276
+ Train epoch: 25 Learning rate: 3.4295e-05
277
+ Training loss: 0.098635
278
+ Instr dry sdr: 11.9577 (Std: 4.5334)
279
+ Instr dry l1_freq: 51.0521 (Std: 14.5271)
280
+ Instr dry si_sdr: 10.8045 (Std: 7.3315)
281
+ Instr other sdr: 5.5823 (Std: 3.0608)
282
+ Instr other l1_freq: 49.4446 (Std: 12.9467)
283
+ Instr other si_sdr: 4.4169 (Std: 3.1841)
284
+ Metric avg sdr : 8.7700
285
+ Metric avg l1_freq : 50.2483
286
+ Metric avg si_sdr : 7.6107
287
+ Train epoch: 26 Learning rate: 3.258025e-05
288
+ Training loss: 0.099137
289
+ Instr dry sdr: 11.9302 (Std: 4.6017)
290
+ Instr dry l1_freq: 50.8494 (Std: 14.8073)
291
+ Instr dry si_sdr: 10.5274 (Std: 8.1764)
292
+ Instr other sdr: 5.5601 (Std: 3.1095)
293
+ Instr other l1_freq: 49.3405 (Std: 13.1348)
294
+ Instr other si_sdr: 4.4060 (Std: 3.2139)
295
+ Metric avg sdr : 8.7451
296
+ Metric avg l1_freq : 50.0949
297
+ Metric avg si_sdr : 7.4667
298
+ Train epoch: 27 Learning rate: 3.258025e-05
299
+ Training loss: 0.097129
300
+ Instr dry sdr: 11.8247 (Std: 4.5460)
301
+ Instr dry l1_freq: 50.5849 (Std: 14.6852)
302
+ Instr dry si_sdr: 10.4771 (Std: 7.9980)
303
+ Instr other sdr: 5.4648 (Std: 3.0762)
304
+ Instr other l1_freq: 48.8602 (Std: 13.0388)
305
+ Instr other si_sdr: 4.2713 (Std: 3.1981)
306
+ Metric avg sdr : 8.6448
307
+ Metric avg l1_freq : 49.7225
308
+ Metric avg si_sdr : 7.3742
309
+ Train epoch: 28 Learning rate: 3.258025e-05
310
+ Training loss: 0.099773
311
+ Instr dry sdr: 11.9798 (Std: 4.5750)
312
+ Instr dry l1_freq: 51.0790 (Std: 14.6501)
313
+ Instr dry si_sdr: 10.6954 (Std: 7.7941)
314
+ Instr other sdr: 5.6008 (Std: 3.0957)
315
+ Instr other l1_freq: 49.4151 (Std: 13.0527)
316
+ Instr other si_sdr: 4.4569 (Std: 3.1976)
317
+ Metric avg sdr : 8.7903
318
+ Metric avg l1_freq : 50.2470
319
+ Metric avg si_sdr : 7.5762
320
+ Train epoch: 29 Learning rate: 3.09512375e-05
321
+ Training loss: 0.099705
322
+ Instr dry sdr: 11.9371 (Std: 4.6418)
323
+ Instr dry l1_freq: 51.0463 (Std: 14.8174)
324
+ Instr dry si_sdr: 10.5877 (Std: 7.9657)
325
+ Instr other sdr: 5.5785 (Std: 3.1468)
326
+ Instr other l1_freq: 49.4233 (Std: 13.1175)
327
+ Instr other si_sdr: 4.4452 (Std: 3.2448)
328
+ Metric avg sdr : 8.7578
329
+ Metric avg l1_freq : 50.2348
330
+ Metric avg si_sdr : 7.5165
331
+ Train epoch: 30 Learning rate: 3.09512375e-05
332
+ Training loss: 0.101415
333
+ Instr dry sdr: 12.1884 (Std: 4.4321)
334
+ Instr dry l1_freq: 51.4162 (Std: 14.2252)
335
+ Instr dry si_sdr: 11.1747 (Std: 6.8448)
336
+ Instr other sdr: 5.8140 (Std: 3.0305)
337
+ Instr other l1_freq: 50.1628 (Std: 12.9061)
338
+ Instr other si_sdr: 4.6854 (Std: 3.1503)
339
+ Metric avg sdr : 9.0012
340
+ Metric avg l1_freq : 50.7895
341
+ Metric avg si_sdr : 7.9300
342
+ Train epoch: 31 Learning rate: 3.09512375e-05
343
+ Training loss: 0.102380
344
+ Instr dry sdr: 12.2048 (Std: 4.4409)
345
+ Instr dry l1_freq: 51.5894 (Std: 14.3102)
346
+ Instr dry si_sdr: 11.1695 (Std: 7.0154)
347
+ Instr other sdr: 5.8346 (Std: 3.0329)
348
+ Instr other l1_freq: 50.0733 (Std: 12.9218)
349
+ Instr other si_sdr: 4.7251 (Std: 3.1519)
350
+ Metric avg sdr : 9.0197
351
+ Metric avg l1_freq : 50.8314
352
+ Metric avg si_sdr : 7.9473
353
+ Train epoch: 32 Learning rate: 3.09512375e-05
354
+ Training loss: 0.101785
355
+ Instr dry sdr: 12.1684 (Std: 4.5522)
356
+ Instr dry l1_freq: 51.4581 (Std: 14.5296)
357
+ Instr dry si_sdr: 11.0002 (Std: 7.4294)
358
+ Instr other sdr: 5.8010 (Std: 3.0979)
359
+ Instr other l1_freq: 49.9899 (Std: 13.0052)
360
+ Instr other si_sdr: 4.7016 (Std: 3.2061)
361
+ Metric avg sdr : 8.9847
362
+ Metric avg l1_freq : 50.7240
363
+ Metric avg si_sdr : 7.8509
364
+ Train epoch: 33 Learning rate: 3.09512375e-05
365
+ Training loss: 0.100284
366
+ Instr dry sdr: 11.9117 (Std: 4.7139)
367
+ Instr dry l1_freq: 50.5437 (Std: 14.9248)
368
+ Instr dry si_sdr: 10.4955 (Std: 8.2177)
369
+ Instr other sdr: 5.5665 (Std: 3.1587)
370
+ Instr other l1_freq: 49.5938 (Std: 13.3054)
371
+ Instr other si_sdr: 4.4402 (Std: 3.2527)
372
+ Metric avg sdr : 8.7391
373
+ Metric avg l1_freq : 50.0688
374
+ Metric avg si_sdr : 7.4679
375
+ Train epoch: 34 Learning rate: 3.09512375e-05
376
+ Training loss: 0.098834
377
+ Instr dry sdr: 11.8616 (Std: 4.6685)
378
+ Instr dry l1_freq: 50.6035 (Std: 14.8479)
379
+ Instr dry si_sdr: 10.4479 (Std: 8.1880)
380
+ Instr other sdr: 5.5394 (Std: 3.1456)
381
+ Instr other l1_freq: 49.5593 (Std: 13.2399)
382
+ Instr other si_sdr: 4.3980 (Std: 3.2515)
383
+ Metric avg sdr : 8.7005
384
+ Metric avg l1_freq : 50.0814
385
+ Metric avg si_sdr : 7.4229
386
+ Train epoch: 35 Learning rate: 2.9403675625e-05
387
+ Training loss: 0.103044
388
+ Instr dry sdr: 12.0009 (Std: 4.6071)
389
+ Instr dry l1_freq: 51.2387 (Std: 14.6381)
390
+ Instr dry si_sdr: 10.7337 (Std: 7.7206)
391
+ Instr other sdr: 5.6760 (Std: 3.1386)
392
+ Instr other l1_freq: 49.7333 (Std: 13.0192)
393
+ Instr other si_sdr: 4.5561 (Std: 3.2552)
394
+ Metric avg sdr : 8.8384
395
+ Metric avg l1_freq : 50.4860
396
+ Metric avg si_sdr : 7.6449
397
+ Train epoch: 36 Learning rate: 2.9403675625e-05
398
+ Training loss: 0.095640
399
+ Instr dry sdr: 12.1978 (Std: 4.6388)
400
+ Instr dry l1_freq: 51.5424 (Std: 14.6671)
401
+ Instr dry si_sdr: 10.9504 (Std: 7.7064)
402
+ Instr other sdr: 5.8538 (Std: 3.1690)
403
+ Instr other l1_freq: 50.2770 (Std: 13.1821)
404
+ Instr other si_sdr: 4.7852 (Std: 3.2577)
405
+ Metric avg sdr : 9.0258
406
+ Metric avg l1_freq : 50.9097
407
+ Metric avg si_sdr : 7.8678
408
+ Train epoch: 37 Learning rate: 2.9403675625e-05
409
+ Training loss: 0.097300
410
+ Instr dry sdr: 12.1350 (Std: 4.7538)
411
+ Instr dry l1_freq: 51.1537 (Std: 14.8995)
412
+ Instr dry si_sdr: 10.6954 (Std: 8.3349)
413
+ Instr other sdr: 5.7904 (Std: 3.2381)
414
+ Instr other l1_freq: 50.0719 (Std: 13.2881)
415
+ Instr other si_sdr: 4.7196 (Std: 3.3284)
416
+ Metric avg sdr : 8.9627
417
+ Metric avg l1_freq : 50.6128
418
+ Metric avg si_sdr : 7.7075
419
+ Train epoch: 38 Learning rate: 2.9403675625e-05
420
+ Training loss: 0.097327
421
+ Instr dry sdr: 12.0688 (Std: 4.8227)
422
+ Instr dry l1_freq: 50.9813 (Std: 15.0747)
423
+ Instr dry si_sdr: 10.5224 (Std: 8.6736)
424
+ Instr other sdr: 5.7242 (Std: 3.2753)
425
+ Instr other l1_freq: 50.0266 (Std: 13.4201)
426
+ Instr other si_sdr: 4.6608 (Std: 3.3507)
427
+ Metric avg sdr : 8.8965
428
+ Metric avg l1_freq : 50.5040
429
+ Metric avg si_sdr : 7.5916
430
+ Train epoch: 39 Learning rate: 2.9403675625e-05
431
+ Training loss: 0.100668
432
+ Instr dry sdr: 11.8969 (Std: 4.8789)
433
+ Instr dry l1_freq: 50.1775 (Std: 15.0496)
434
+ Instr dry si_sdr: 10.4221 (Std: 8.4724)
435
+ Instr other sdr: 5.5662 (Std: 3.2807)
436
+ Instr other l1_freq: 49.3151 (Std: 13.3768)
437
+ Instr other si_sdr: 4.4702 (Std: 3.3781)
438
+ Metric avg sdr : 8.7316
439
+ Metric avg l1_freq : 49.7463
440
+ Metric avg si_sdr : 7.4462
441
+ Train epoch: 40 Learning rate: 2.7933491843749998e-05
442
+ Training loss: 0.096047
443
+ Instr dry sdr: 11.7411 (Std: 5.1290)
444
+ Instr dry l1_freq: 49.9637 (Std: 15.4402)
445
+ Instr dry si_sdr: 10.1175 (Std: 8.8404)
446
+ Instr other sdr: 5.4359 (Std: 3.4525)
447
+ Instr other l1_freq: 49.2590 (Std: 13.6127)
448
+ Instr other si_sdr: 4.3865 (Std: 3.5094)
449
+ Metric avg sdr : 8.5885
450
+ Metric avg l1_freq : 49.6114
451
+ Metric avg si_sdr : 7.2520
452
+ Train epoch: 41 Learning rate: 2.7933491843749998e-05
453
+ Training loss: 0.095904
454
+ Instr dry sdr: 12.2122 (Std: 4.6289)
455
+ Instr dry l1_freq: 51.6605 (Std: 14.6610)
456
+ Instr dry si_sdr: 11.2688 (Std: 6.6841)
457
+ Instr other sdr: 5.8853 (Std: 3.1060)
458
+ Instr other l1_freq: 50.0406 (Std: 13.1129)
459
+ Instr other si_sdr: 4.8181 (Std: 3.2378)
460
+ Metric avg sdr : 9.0487
461
+ Metric avg l1_freq : 50.8506
462
+ Metric avg si_sdr : 8.0434
463
+ Train epoch: 42 Learning rate: 2.7933491843749998e-05
464
+ Training loss: 0.100599
465
+ Instr dry sdr: 12.1917 (Std: 4.6540)
466
+ Instr dry l1_freq: 51.6310 (Std: 14.7739)
467
+ Instr dry si_sdr: 11.0723 (Std: 7.3049)
468
+ Instr other sdr: 5.8670 (Std: 3.1752)
469
+ Instr other l1_freq: 50.0911 (Std: 13.2149)
470
+ Instr other si_sdr: 4.8079 (Std: 3.2820)
471
+ Metric avg sdr : 9.0293
472
+ Metric avg l1_freq : 50.8610
473
+ Metric avg si_sdr : 7.9401
474
+ Train epoch: 43 Learning rate: 2.7933491843749998e-05
475
+ Training loss: 0.098432
476
+ Instr dry sdr: 12.2574 (Std: 4.6928)
477
+ Instr dry l1_freq: 51.7157 (Std: 14.8442)
478
+ Instr dry si_sdr: 11.0937 (Std: 7.4824)
479
+ Instr other sdr: 5.9243 (Std: 3.2065)
480
+ Instr other l1_freq: 50.3579 (Std: 13.3033)
481
+ Instr other si_sdr: 4.8882 (Std: 3.3074)
482
+ Metric avg sdr : 9.0909
483
+ Metric avg l1_freq : 51.0368
484
+ Metric avg si_sdr : 7.9909
485
+ Train epoch: 44 Learning rate: 2.7933491843749998e-05
486
+ Training loss: 0.099358
487
+ Instr dry sdr: 12.1303 (Std: 4.8594)
488
+ Instr dry l1_freq: 51.3296 (Std: 15.1673)
489
+ Instr dry si_sdr: 10.7959 (Std: 8.0152)
490
+ Instr other sdr: 5.8136 (Std: 3.3279)
491
+ Instr other l1_freq: 50.1510 (Std: 13.4426)
492
+ Instr other si_sdr: 4.7747 (Std: 3.4179)
493
+ Metric avg sdr : 8.9719
494
+ Metric avg l1_freq : 50.7403
495
+ Metric avg si_sdr : 7.7853
496
+ Train epoch: 45 Learning rate: 2.7933491843749998e-05
497
+ Training loss: 0.094929
498
+ Instr dry sdr: 12.0053 (Std: 4.9333)
499
+ Instr dry l1_freq: 51.0921 (Std: 15.2064)
500
+ Instr dry si_sdr: 10.6287 (Std: 8.1391)
501
+ Instr other sdr: 5.6823 (Std: 3.3632)
502
+ Instr other l1_freq: 49.9480 (Std: 13.4875)
503
+ Instr other si_sdr: 4.6250 (Std: 3.4695)
504
+ Metric avg sdr : 8.8438
505
+ Metric avg l1_freq : 50.5201
506
+ Metric avg si_sdr : 7.6269
507
+ Train epoch: 46 Learning rate: 2.7933491843749998e-05
508
+ Training loss: 0.094544
509
+ Instr dry sdr: 12.2630 (Std: 4.7134)
510
+ Instr dry l1_freq: 51.8582 (Std: 14.7762)
511
+ Instr dry si_sdr: 11.2257 (Std: 7.0517)
512
+ Instr other sdr: 5.9420 (Std: 3.2099)
513
+ Instr other l1_freq: 50.4802 (Std: 13.1570)
514
+ Instr other si_sdr: 4.9045 (Std: 3.3225)
515
+ Metric avg sdr : 9.1025
516
+ Metric avg l1_freq : 51.1692
517
+ Metric avg si_sdr : 8.0651
518
+ Train epoch: 47 Learning rate: 2.7933491843749998e-05
519
+ Training loss: 0.100300
520
+ Instr dry sdr: 12.5258 (Std: 4.2445)
521
+ Instr dry l1_freq: 52.7581 (Std: 13.7617)
522
+ Instr dry si_sdr: 11.9621 (Std: 5.3200)
523
+ Instr other sdr: 6.2022 (Std: 2.8190)
524
+ Instr other l1_freq: 50.9424 (Std: 12.3721)
525
+ Instr other si_sdr: 5.1532 (Std: 3.0129)
526
+ Metric avg sdr : 9.3640
527
+ Metric avg l1_freq : 51.8502
528
+ Metric avg si_sdr : 8.5576
529
+ Train epoch: 48 Learning rate: 2.7933491843749998e-05
530
+ Training loss: 0.095596
531
+ Instr dry sdr: 12.4497 (Std: 4.4619)
532
+ Instr dry l1_freq: 52.3584 (Std: 14.2714)
533
+ Instr dry si_sdr: 11.6337 (Std: 6.2797)
534
+ Instr other sdr: 6.1288 (Std: 3.0325)
535
+ Instr other l1_freq: 50.8711 (Std: 12.8454)
536
+ Instr other si_sdr: 5.0948 (Std: 3.1700)
537
+ Metric avg sdr : 9.2892
538
+ Metric avg l1_freq : 51.6147
539
+ Metric avg si_sdr : 8.3643
540
+ Train epoch: 49 Learning rate: 2.7933491843749998e-05
541
+ Training loss: 0.103359
542
+ Instr dry sdr: 12.4709 (Std: 4.3961)
543
+ Instr dry l1_freq: 51.9473 (Std: 14.2387)
544
+ Instr dry si_sdr: 11.8527 (Std: 5.5742)
545
+ Instr other sdr: 6.1567 (Std: 2.9016)
546
+ Instr other l1_freq: 50.5832 (Std: 12.7367)
547
+ Instr other si_sdr: 5.1042 (Std: 3.1088)
548
+ Metric avg sdr : 9.3138
549
+ Metric avg l1_freq : 51.2652
550
+ Metric avg si_sdr : 8.4785
551
+ Train epoch: 50 Learning rate: 2.7933491843749998e-05
552
+ Training loss: 0.097140
553
+ Instr dry sdr: 12.5480 (Std: 4.4551)
554
+ Instr dry l1_freq: 52.4209 (Std: 14.3051)
555
+ Instr dry si_sdr: 11.8755 (Std: 5.8093)
556
+ Instr other sdr: 6.2244 (Std: 2.9714)
557
+ Instr other l1_freq: 50.8542 (Std: 12.8472)
558
+ Instr other si_sdr: 5.2055 (Std: 3.1398)
559
+ Metric avg sdr : 9.3862
560
+ Metric avg l1_freq : 51.6375
561
+ Metric avg si_sdr : 8.5405
562
+ Train epoch: 51 Learning rate: 2.7933491843749998e-05
563
+ Training loss: 0.095402
564
+ Instr dry sdr: 12.4629 (Std: 4.4734)
565
+ Instr dry l1_freq: 52.3328 (Std: 14.3300)
566
+ Instr dry si_sdr: 11.7317 (Std: 6.0010)
567
+ Instr other sdr: 6.1470 (Std: 3.0206)
568
+ Instr other l1_freq: 50.7004 (Std: 12.8662)
569
+ Instr other si_sdr: 5.1226 (Std: 3.1724)
570
+ Metric avg sdr : 9.3050
571
+ Metric avg l1_freq : 51.5166
572
+ Metric avg si_sdr : 8.4272
573
+ Train epoch: 52 Learning rate: 2.7933491843749998e-05
574
+ Training loss: 0.099080
575
+ Instr dry sdr: 12.6029 (Std: 4.4025)
576
+ Instr dry l1_freq: 52.7431 (Std: 14.1114)
577
+ Instr dry si_sdr: 12.0241 (Std: 5.4395)
578
+ Instr other sdr: 6.2833 (Std: 2.9341)
579
+ Instr other l1_freq: 51.1383 (Std: 12.6247)
580
+ Instr other si_sdr: 5.2792 (Std: 3.1178)
581
+ Metric avg sdr : 9.4431
582
+ Metric avg l1_freq : 51.9407
583
+ Metric avg si_sdr : 8.6517
584
+ Train epoch: 53 Learning rate: 2.7933491843749998e-05
585
+ Training loss: 0.094254
586
+ Instr dry sdr: 12.5107 (Std: 4.6218)
587
+ Instr dry l1_freq: 52.4360 (Std: 14.5449)
588
+ Instr dry si_sdr: 11.7284 (Std: 6.2280)
589
+ Instr other sdr: 6.1962 (Std: 3.1480)
590
+ Instr other l1_freq: 50.9403 (Std: 13.0012)
591
+ Instr other si_sdr: 5.2072 (Std: 3.2774)
592
+ Metric avg sdr : 9.3534
593
+ Metric avg l1_freq : 51.6882
594
+ Metric avg si_sdr : 8.4678
595
+ Train epoch: 54 Learning rate: 2.7933491843749998e-05
596
+ Training loss: 0.091159
597
+ Instr dry sdr: 12.0227 (Std: 4.9936)
598
+ Instr dry l1_freq: 51.1259 (Std: 15.4072)
599
+ Instr dry si_sdr: 10.5224 (Std: 8.5369)
600
+ Instr other sdr: 5.7271 (Std: 3.4290)
601
+ Instr other l1_freq: 49.7751 (Std: 13.6606)
602
+ Instr other si_sdr: 4.7132 (Std: 3.4658)
603
+ Metric avg sdr : 8.8749
604
+ Metric avg l1_freq : 50.4505
605
+ Metric avg si_sdr : 7.6178
606
+ Train epoch: 55 Learning rate: 2.7933491843749998e-05
607
+ Training loss: 0.096296
608
+ Instr dry sdr: 12.2970 (Std: 4.8705)
609
+ Instr dry l1_freq: 51.8453 (Std: 15.0951)
610
+ Instr dry si_sdr: 11.0047 (Std: 7.9714)
611
+ Instr other sdr: 5.9926 (Std: 3.3691)
612
+ Instr other l1_freq: 50.5093 (Std: 13.4355)
613
+ Instr other si_sdr: 5.0113 (Std: 3.4300)
614
+ Metric avg sdr : 9.1448
615
+ Metric avg l1_freq : 51.1773
616
+ Metric avg si_sdr : 8.0080
617
+ Train epoch: 56 Learning rate: 2.6536817251562497e-05
618
+ Training loss: 0.094687
619
+ Instr dry sdr: 12.2359 (Std: 5.0098)
620
+ Instr dry l1_freq: 51.4253 (Std: 15.2918)
621
+ Instr dry si_sdr: 10.7536 (Std: 8.5601)
622
+ Instr other sdr: 5.9342 (Std: 3.4720)
623
+ Instr other l1_freq: 50.4779 (Std: 13.6366)
624
+ Instr other si_sdr: 4.9585 (Std: 3.5136)
625
+ Metric avg sdr : 9.0850
626
+ Metric avg l1_freq : 50.9516
627
+ Metric avg si_sdr : 7.8560
628
+ Train epoch: 57 Learning rate: 2.6536817251562497e-05
629
+ Training loss: 0.095657
630
+ Instr dry sdr: 12.2102 (Std: 4.9633)
631
+ Instr dry l1_freq: 51.4960 (Std: 15.2521)
632
+ Instr dry si_sdr: 10.7497 (Std: 8.4845)
633
+ Instr other sdr: 5.9077 (Std: 3.4567)
634
+ Instr other l1_freq: 50.2654 (Std: 13.5850)
635
+ Instr other si_sdr: 4.9244 (Std: 3.4981)
636
+ Metric avg sdr : 9.0590
637
+ Metric avg l1_freq : 50.8807
638
+ Metric avg si_sdr : 7.8371
639
+ Train epoch: 58 Learning rate: 2.6536817251562497e-05
640
+ Training loss: 0.097515
641
+ Instr dry sdr: 12.4264 (Std: 4.8078)
642
+ Instr dry l1_freq: 52.1458 (Std: 14.9872)
643
+ Instr dry si_sdr: 11.3226 (Std: 7.4191)
644
+ Instr other sdr: 6.1070 (Std: 3.3150)
645
+ Instr other l1_freq: 50.8045 (Std: 13.3580)
646
+ Instr other si_sdr: 5.1458 (Std: 3.3906)
647
+ Metric avg sdr : 9.2667
648
+ Metric avg l1_freq : 51.4752
649
+ Metric avg si_sdr : 8.2342
650
+ Train epoch: 59 Learning rate: 2.5209976388984372e-05
651
+ Training loss: 0.097498
652
+ Instr dry sdr: 12.3827 (Std: 4.9430)
653
+ Instr dry l1_freq: 51.7468 (Std: 15.2411)
654
+ Instr dry si_sdr: 10.9553 (Std: 8.4594)
655
+ Instr other sdr: 6.0841 (Std: 3.4534)
656
+ Instr other l1_freq: 50.8139 (Std: 13.6451)
657
+ Instr other si_sdr: 5.1394 (Std: 3.4837)
658
+ Metric avg sdr : 9.2334
659
+ Metric avg l1_freq : 51.2803
660
+ Metric avg si_sdr : 8.0473
661
+ Train epoch: 60 Learning rate: 2.5209976388984372e-05
662
+ Training loss: 0.093099
663
+ Instr dry sdr: 12.2849 (Std: 4.9824)
664
+ Instr dry l1_freq: 51.6414 (Std: 15.1842)
665
+ Instr dry si_sdr: 10.8583 (Std: 8.4044)
666
+ Instr other sdr: 5.9955 (Std: 3.4715)
667
+ Instr other l1_freq: 50.6220 (Std: 13.5627)
668
+ Instr other si_sdr: 5.0373 (Std: 3.5125)
669
+ Metric avg sdr : 9.1402
670
+ Metric avg l1_freq : 51.1317
671
+ Metric avg si_sdr : 7.9478
672
+ Train epoch: 61 Learning rate: 2.5209976388984372e-05
673
+ Training loss: 0.103669
674
+ Instr dry sdr: 12.0979 (Std: 5.1797)
675
+ Instr dry l1_freq: 50.9696 (Std: 15.3880)
676
+ Instr dry si_sdr: 10.4390 (Std: 9.0538)
677
+ Instr other sdr: 5.8103 (Std: 3.6200)
678
+ Instr other l1_freq: 50.1947 (Std: 13.6859)
679
+ Instr other si_sdr: 4.8524 (Std: 3.6527)
680
+ Metric avg sdr : 8.9541
681
+ Metric avg l1_freq : 50.5821
682
+ Metric avg si_sdr : 7.6457
683
+ Train epoch: 62 Learning rate: 2.3949477569535154e-05
684
+ Training loss: 0.092208
685
+ Instr dry sdr: 12.2718 (Std: 5.0631)
686
+ Instr dry l1_freq: 51.3891 (Std: 15.3569)
687
+ Instr dry si_sdr: 10.7125 (Std: 8.8047)
688
+ Instr other sdr: 5.9777 (Std: 3.5298)
689
+ Instr other l1_freq: 50.5797 (Std: 13.7257)
690
+ Instr other si_sdr: 5.0241 (Std: 3.5631)
691
+ Metric avg sdr : 9.1248
692
+ Metric avg l1_freq : 50.9844
693
+ Metric avg si_sdr : 7.8683
694
+ Train epoch: 63 Learning rate: 2.3949477569535154e-05
695
+ Training loss: 0.102014
696
+ Instr dry sdr: 11.9243 (Std: 5.3757)
697
+ Instr dry l1_freq: 50.3253 (Std: 15.8274)
698
+ Instr dry si_sdr: 10.0076 (Std: 9.6708)
699
+ Instr other sdr: 5.6612 (Std: 3.7498)
700
+ Instr other l1_freq: 49.9824 (Std: 13.9572)
701
+ Instr other si_sdr: 4.7142 (Std: 3.7771)
702
+ Metric avg sdr : 8.7927
703
+ Metric avg l1_freq : 50.1539
704
+ Metric avg si_sdr : 7.3609
705
+ Train epoch: 64 Learning rate: 2.3949477569535154e-05
706
+ Training loss: 0.095988
707
+ Instr dry sdr: 12.2540 (Std: 5.0462)
708
+ Instr dry l1_freq: 51.4500 (Std: 15.3783)
709
+ Instr dry si_sdr: 10.7858 (Std: 8.5484)
710
+ Instr other sdr: 5.9716 (Std: 3.5017)
711
+ Instr other l1_freq: 50.5902 (Std: 13.7341)
712
+ Instr other si_sdr: 5.0183 (Std: 3.5460)
713
+ Metric avg sdr : 9.1128
714
+ Metric avg l1_freq : 51.0201
715
+ Metric avg si_sdr : 7.9021
716
+ Train epoch: 65 Learning rate: 2.2752003691058396e-05
717
+ Training loss: 0.098379
718
+ Instr dry sdr: 12.3659 (Std: 5.0193)
719
+ Instr dry l1_freq: 51.6833 (Std: 15.3331)
720
+ Instr dry si_sdr: 10.9391 (Std: 8.4503)
721
+ Instr other sdr: 6.0788 (Std: 3.4828)
722
+ Instr other l1_freq: 50.8337 (Std: 13.6849)
723
+ Instr other si_sdr: 5.1414 (Std: 3.5247)
724
+ Metric avg sdr : 9.2224
725
+ Metric avg l1_freq : 51.2585
726
+ Metric avg si_sdr : 8.0402
727
+ Train epoch: 66 Learning rate: 2.2752003691058396e-05
728
+ Training loss: 0.091182
729
+ Instr dry sdr: 12.5520 (Std: 4.7837)
730
+ Instr dry l1_freq: 52.3609 (Std: 14.9107)
731
+ Instr dry si_sdr: 11.5022 (Std: 7.2267)
732
+ Instr other sdr: 6.2720 (Std: 3.3150)
733
+ Instr other l1_freq: 51.2592 (Std: 13.3255)
734
+ Instr other si_sdr: 5.3416 (Std: 3.3879)
735
+ Metric avg sdr : 9.4120
736
+ Metric avg l1_freq : 51.8101
737
+ Metric avg si_sdr : 8.4219
738
+ Train epoch: 67 Learning rate: 2.2752003691058396e-05
739
+ Training loss: 0.092582
740
+ Instr dry sdr: 12.6093 (Std: 4.8153)
741
+ Instr dry l1_freq: 52.3751 (Std: 15.0178)
742
+ Instr dry si_sdr: 11.5044 (Std: 7.4468)
743
+ Instr other sdr: 6.3197 (Std: 3.3409)
744
+ Instr other l1_freq: 51.4147 (Std: 13.4250)
745
+ Instr other si_sdr: 5.4056 (Std: 3.4002)
746
+ Metric avg sdr : 9.4645
747
+ Metric avg l1_freq : 51.8949
748
+ Metric avg si_sdr : 8.4550
749
+ Train epoch: 68 Learning rate: 2.2752003691058396e-05
750
+ Training loss: 0.095525
751
+ Instr dry sdr: 12.6933 (Std: 4.6196)
752
+ Instr dry l1_freq: 52.7676 (Std: 14.5984)
753
+ Instr dry si_sdr: 11.9203 (Std: 6.2891)
754
+ Instr other sdr: 6.4140 (Std: 3.1507)
755
+ Instr other l1_freq: 51.5851 (Std: 12.9630)
756
+ Instr other si_sdr: 5.4850 (Std: 3.2781)
757
+ Metric avg sdr : 9.5537
758
+ Metric avg l1_freq : 52.1764
759
+ Metric avg si_sdr : 8.7026
760
+ Train epoch: 69 Learning rate: 2.2752003691058396e-05
761
+ Training loss: 0.094700
762
+ Instr dry sdr: 12.6011 (Std: 4.7247)
763
+ Instr dry l1_freq: 52.4801 (Std: 14.7547)
764
+ Instr dry si_sdr: 11.6395 (Std: 6.9502)
765
+ Instr other sdr: 6.3259 (Std: 3.2496)
766
+ Instr other l1_freq: 51.3514 (Std: 13.1609)
767
+ Instr other si_sdr: 5.3912 (Std: 3.3501)
768
+ Metric avg sdr : 9.4635
769
+ Metric avg l1_freq : 51.9158
770
+ Metric avg si_sdr : 8.5153
771
+ Train epoch: 70 Learning rate: 2.2752003691058396e-05
772
+ Training loss: 0.094604
773
+ Instr dry sdr: 12.7777 (Std: 4.4996)
774
+ Instr dry l1_freq: 52.9749 (Std: 14.2646)
775
+ Instr dry si_sdr: 12.0962 (Std: 5.9162)
776
+ Instr other sdr: 6.4962 (Std: 3.0231)
777
+ Instr other l1_freq: 51.8018 (Std: 12.7076)
778
+ Instr other si_sdr: 5.5538 (Std: 3.1770)
779
+ Metric avg sdr : 9.6370
780
+ Metric avg l1_freq : 52.3884
781
+ Metric avg si_sdr : 8.8250
782
+ Train epoch: 71 Learning rate: 2.2752003691058396e-05
783
+ Training loss: 0.097073
784
+ Instr dry sdr: 12.5640 (Std: 4.8496)
785
+ Instr dry l1_freq: 52.2550 (Std: 14.9567)
786
+ Instr dry si_sdr: 11.5595 (Std: 7.0962)
787
+ Instr other sdr: 6.2763 (Std: 3.3485)
788
+ Instr other l1_freq: 51.3199 (Std: 13.3586)
789
+ Instr other si_sdr: 5.3568 (Std: 3.4202)
790
+ Metric avg sdr : 9.4202
791
+ Metric avg l1_freq : 51.7875
792
+ Metric avg si_sdr : 8.4581
793
+ Train epoch: 72 Learning rate: 2.2752003691058396e-05
794
+ Training loss: 0.095600
795
+ Instr dry sdr: 12.8003 (Std: 4.5423)
796
+ Instr dry l1_freq: 52.7600 (Std: 14.3588)
797
+ Instr dry si_sdr: 12.1805 (Std: 5.7041)
798
+ Instr other sdr: 6.5115 (Std: 2.9982)
799
+ Instr other l1_freq: 52.0823 (Std: 12.7863)
800
+ Instr other si_sdr: 5.5840 (Std: 3.1398)
801
+ Metric avg sdr : 9.6559
802
+ Metric avg l1_freq : 52.4211
803
+ Metric avg si_sdr : 8.8822
804
+ Train epoch: 73 Learning rate: 2.2752003691058396e-05
805
+ Training loss: 0.094673
806
+ Instr dry sdr: 12.4820 (Std: 4.9681)
807
+ Instr dry l1_freq: 51.8282 (Std: 15.2062)
808
+ Instr dry si_sdr: 11.2022 (Std: 8.0409)
809
+ Instr other sdr: 6.1976 (Std: 3.4702)
810
+ Instr other l1_freq: 51.1850 (Std: 13.6441)
811
+ Instr other si_sdr: 5.2832 (Std: 3.5149)
812
+ Metric avg sdr : 9.3398
813
+ Metric avg l1_freq : 51.5066
814
+ Metric avg si_sdr : 8.2427
815
+ Train epoch: 74 Learning rate: 2.2752003691058396e-05
816
+ Training loss: 0.098970
817
+ Instr dry sdr: 13.0093 (Std: 4.1357)
818
+ Instr dry l1_freq: 53.5719 (Std: 13.3422)
819
+ Instr dry si_sdr: 12.5743 (Std: 4.8086)
820
+ Instr other sdr: 6.7228 (Std: 2.5965)
821
+ Instr other l1_freq: 52.6082 (Std: 11.9304)
822
+ Instr other si_sdr: 5.7645 (Std: 2.8514)
823
+ Metric avg sdr : 9.8661
824
+ Metric avg l1_freq : 53.0901
825
+ Metric avg si_sdr : 9.1694
826
+ Train epoch: 75 Learning rate: 2.2752003691058396e-05
827
+ Training loss: 0.098243
828
+ Instr dry sdr: 12.3501 (Std: 5.0944)
829
+ Instr dry l1_freq: 51.7057 (Std: 15.2088)
830
+ Instr dry si_sdr: 10.9885 (Std: 8.2387)
831
+ Instr other sdr: 6.0836 (Std: 3.5578)
832
+ Instr other l1_freq: 51.0110 (Std: 13.5603)
833
+ Instr other si_sdr: 5.1709 (Std: 3.5957)
834
+ Metric avg sdr : 9.2169
835
+ Metric avg l1_freq : 51.3583
836
+ Metric avg si_sdr : 8.0797
837
+ Train epoch: 76 Learning rate: 2.2752003691058396e-05
838
+ Training loss: 0.100630
839
+ Instr dry sdr: 12.7034 (Std: 4.6444)
840
+ Instr dry l1_freq: 52.7285 (Std: 14.6490)
841
+ Instr dry si_sdr: 11.8711 (Std: 6.4940)
842
+ Instr other sdr: 6.4306 (Std: 3.1718)
843
+ Instr other l1_freq: 51.6144 (Std: 13.1196)
844
+ Instr other si_sdr: 5.5063 (Std: 3.2832)
845
+ Metric avg sdr : 9.5670
846
+ Metric avg l1_freq : 52.1714
847
+ Metric avg si_sdr : 8.6887
848
+ Train epoch: 77 Learning rate: 2.2752003691058396e-05
849
+ Training loss: 0.096283
850
+ Instr dry sdr: 12.4348 (Std: 5.0475)
851
+ Instr dry l1_freq: 51.7710 (Std: 15.2990)
852
+ Instr dry si_sdr: 11.0244 (Std: 8.4198)
853
+ Instr other sdr: 6.1578 (Std: 3.5390)
854
+ Instr other l1_freq: 50.9328 (Std: 13.6746)
855
+ Instr other si_sdr: 5.2448 (Std: 3.5768)
856
+ Metric avg sdr : 9.2963
857
+ Metric avg l1_freq : 51.3519
858
+ Metric avg si_sdr : 8.1346
859
+ Train epoch: 78 Learning rate: 2.1614403506505474e-05
860
+ Training loss: 0.097837
861
+ Instr dry sdr: 13.0207 (Std: 4.1453)
862
+ Instr dry l1_freq: 53.6459 (Std: 13.1713)
863
+ Instr dry si_sdr: 12.6080 (Std: 4.7312)
864
+ Instr other sdr: 6.7353 (Std: 2.5701)
865
+ Instr other l1_freq: 52.6842 (Std: 11.7093)
866
+ Instr other si_sdr: 5.7647 (Std: 2.8744)
867
+ Metric avg sdr : 9.8780
868
+ Metric avg l1_freq : 53.1650
869
+ Metric avg si_sdr : 9.1863
870
+ Train epoch: 79 Learning rate: 2.1614403506505474e-05
871
+ Training loss: 0.101947
872
+ Instr dry sdr: 12.9332 (Std: 4.3436)
873
+ Instr dry l1_freq: 53.3537 (Std: 13.8190)
874
+ Instr dry si_sdr: 12.4283 (Std: 5.2005)
875
+ Instr other sdr: 6.6543 (Std: 2.8273)
876
+ Instr other l1_freq: 52.4335 (Std: 12.2786)
877
+ Instr other si_sdr: 5.7128 (Std: 3.0416)
878
+ Metric avg sdr : 9.7937
879
+ Metric avg l1_freq : 52.8936
880
+ Metric avg si_sdr : 9.0706
881
+ Train epoch: 80 Learning rate: 2.1614403506505474e-05
882
+ Training loss: 0.099350
883
+ Instr dry sdr: 12.4723 (Std: 5.0149)
884
+ Instr dry l1_freq: 52.1068 (Std: 15.3157)
885
+ Instr dry si_sdr: 11.0805 (Std: 8.3241)
886
+ Instr other sdr: 6.2074 (Std: 3.5594)
887
+ Instr other l1_freq: 51.0360 (Std: 13.6940)
888
+ Instr other si_sdr: 5.3164 (Std: 3.5688)
889
+ Metric avg sdr : 9.3399
890
+ Metric avg l1_freq : 51.5714
891
+ Metric avg si_sdr : 8.1985
892
+ Train epoch: 81 Learning rate: 2.1614403506505474e-05
893
+ Training loss: 0.093635
894
+ Instr dry sdr: 12.7099 (Std: 4.8541)
895
+ Instr dry l1_freq: 52.5968 (Std: 15.0617)
896
+ Instr dry si_sdr: 11.8017 (Std: 6.8042)
897
+ Instr other sdr: 6.4319 (Std: 3.3872)
898
+ Instr other l1_freq: 51.6630 (Std: 13.4759)
899
+ Instr other si_sdr: 5.5562 (Std: 3.4348)
900
+ Metric avg sdr : 9.5709
901
+ Metric avg l1_freq : 52.1299
902
+ Metric avg si_sdr : 8.6790
903
+ Train epoch: 82 Learning rate: 2.05336833311802e-05
904
+ Training loss: 0.096353
905
+ Instr dry sdr: 12.9787 (Std: 4.3767)
906
+ Instr dry l1_freq: 53.1769 (Std: 14.0526)
907
+ Instr dry si_sdr: 12.4865 (Std: 5.1844)
908
+ Instr other sdr: 6.6993 (Std: 2.8520)
909
+ Instr other l1_freq: 52.2443 (Std: 12.6081)
910
+ Instr other si_sdr: 5.7706 (Std: 3.0585)
911
+ Metric avg sdr : 9.8390
912
+ Metric avg l1_freq : 52.7106
913
+ Metric avg si_sdr : 9.1286
914
+ Train epoch: 83 Learning rate: 2.05336833311802e-05
915
+ Training loss: 0.097904
916
+ Instr dry sdr: 12.7420 (Std: 4.8454)
917
+ Instr dry l1_freq: 52.7578 (Std: 15.0835)
918
+ Instr dry si_sdr: 11.7943 (Std: 6.9475)
919
+ Instr other sdr: 6.4755 (Std: 3.3666)
920
+ Instr other l1_freq: 51.7215 (Std: 13.4713)
921
+ Instr other si_sdr: 5.6022 (Std: 3.4287)
922
+ Metric avg sdr : 9.6088
923
+ Metric avg l1_freq : 52.2396
924
+ Metric avg si_sdr : 8.6982
925
+ Train epoch: 84 Learning rate: 2.05336833311802e-05
926
+ Training loss: 0.100543
927
+ Instr dry sdr: 12.6633 (Std: 4.9497)
928
+ Instr dry l1_freq: 52.5279 (Std: 15.2972)
929
+ Instr dry si_sdr: 11.4269 (Std: 7.9240)
930
+ Instr other sdr: 6.3931 (Std: 3.4863)
931
+ Instr other l1_freq: 51.4757 (Std: 13.7058)
932
+ Instr other si_sdr: 5.5262 (Std: 3.5109)
933
+ Metric avg sdr : 9.5282
934
+ Metric avg l1_freq : 52.0018
935
+ Metric avg si_sdr : 8.4766
936
+ Train epoch: 85 Learning rate: 1.9506999164621187e-05
937
+ Training loss: 0.094997
938
+ Instr dry sdr: 12.6071 (Std: 4.9734)
939
+ Instr dry l1_freq: 52.4756 (Std: 15.3162)
940
+ Instr dry si_sdr: 11.3062 (Std: 8.1111)
941
+ Instr other sdr: 6.3386 (Std: 3.5149)
942
+ Instr other l1_freq: 51.1921 (Std: 13.6591)
943
+ Instr other si_sdr: 5.4646 (Std: 3.5364)
944
+ Metric avg sdr : 9.4728
945
+ Metric avg l1_freq : 51.8338
946
+ Metric avg si_sdr : 8.3854
947
+ Train epoch: 86 Learning rate: 1.9506999164621187e-05
948
+ Training loss: 0.088851
949
+ Instr dry sdr: 12.7812 (Std: 4.8315)
950
+ Instr dry l1_freq: 52.8639 (Std: 14.9941)
951
+ Instr dry si_sdr: 11.8750 (Std: 6.8288)
952
+ Instr other sdr: 6.5110 (Std: 3.3512)
953
+ Instr other l1_freq: 51.8905 (Std: 13.4302)
954
+ Instr other si_sdr: 5.6364 (Std: 3.4245)
955
+ Metric avg sdr : 9.6461
956
+ Metric avg l1_freq : 52.3772
957
+ Metric avg si_sdr : 8.7557
958
+ Train epoch: 87 Learning rate: 1.9506999164621187e-05
959
+ Training loss: 0.096688
960
+ Instr dry sdr: 12.6107 (Std: 5.0691)
961
+ Instr dry l1_freq: 52.2532 (Std: 15.5093)
962
+ Instr dry si_sdr: 11.1608 (Std: 8.5200)
963
+ Instr other sdr: 6.3398 (Std: 3.6006)
964
+ Instr other l1_freq: 51.5105 (Std: 13.9688)
965
+ Instr other si_sdr: 5.4765 (Std: 3.5912)
966
+ Metric avg sdr : 9.4752
967
+ Metric avg l1_freq : 51.8819
968
+ Metric avg si_sdr : 8.3187
969
+ Train epoch: 88 Learning rate: 1.8531649206390126e-05
970
+ Training loss: 0.088508
971
+ Instr dry sdr: 12.7883 (Std: 4.8446)
972
+ Instr dry l1_freq: 52.9156 (Std: 15.0524)
973
+ Instr dry si_sdr: 11.9754 (Std: 6.4877)
974
+ Instr other sdr: 6.5203 (Std: 3.3676)
975
+ Instr other l1_freq: 51.7987 (Std: 13.4090)
976
+ Instr other si_sdr: 5.6604 (Std: 3.4343)
977
+ Metric avg sdr : 9.6543
978
+ Metric avg l1_freq : 52.3571
979
+ Metric avg si_sdr : 8.8179
980
+ Train epoch: 89 Learning rate: 1.8531649206390126e-05
981
+ Training loss: 0.093433
982
+ Instr dry sdr: 12.6572 (Std: 4.9947)
983
+ Instr dry l1_freq: 52.4093 (Std: 15.3350)
984
+ Instr dry si_sdr: 11.4798 (Std: 7.6844)
985
+ Instr other sdr: 6.3887 (Std: 3.5282)
986
+ Instr other l1_freq: 51.5581 (Std: 13.7855)
987
+ Instr other si_sdr: 5.5268 (Std: 3.5389)
988
+ Metric avg sdr : 9.5229
989
+ Metric avg l1_freq : 51.9837
990
+ Metric avg si_sdr : 8.5033
991
+ Train epoch: 90 Learning rate: 1.8531649206390126e-05
992
+ Training loss: 0.094809
993
+ Instr dry sdr: 13.1507 (Std: 4.1088)
994
+ Instr dry l1_freq: 53.7715 (Std: 13.3363)
995
+ Instr dry si_sdr: 12.7707 (Std: 4.6134)
996
+ Instr other sdr: 6.8830 (Std: 2.5547)
997
+ Instr other l1_freq: 52.7358 (Std: 11.8587)
998
+ Instr other si_sdr: 5.9448 (Std: 2.8721)
999
+ Metric avg sdr : 10.0169
1000
+ Metric avg l1_freq : 53.2536
1001
+ Metric avg si_sdr : 9.3577
1002
+ Train epoch: 91 Learning rate: 1.8531649206390126e-05
1003
+ Training loss: 0.098019
1004
+ Instr dry sdr: 12.2693 (Std: 5.2773)
1005
+ Instr dry l1_freq: 51.0024 (Std: 15.6507)
1006
+ Instr dry si_sdr: 10.1893 (Std: 10.3445)
1007
+ Instr other sdr: 6.0155 (Std: 3.7583)
1008
+ Instr other l1_freq: 50.2293 (Std: 13.8978)
1009
+ Instr other si_sdr: 5.1193 (Std: 3.7885)
1010
+ Metric avg sdr : 9.1424
1011
+ Metric avg l1_freq : 50.6159
1012
+ Metric avg si_sdr : 7.6543
1013
+ Train epoch: 92 Learning rate: 1.8531649206390126e-05
1014
+ Training loss: 0.095568
1015
+ Instr dry sdr: 12.1517 (Std: 5.4645)
1016
+ Instr dry l1_freq: 50.5573 (Std: 16.0760)
1017
+ Instr dry si_sdr: 9.7243 (Std: 11.3482)
1018
+ Instr other sdr: 5.9071 (Std: 3.8700)
1019
+ Instr other l1_freq: 50.2320 (Std: 14.1274)
1020
+ Instr other si_sdr: 5.0182 (Std: 3.9033)
1021
+ Metric avg sdr : 9.0294
1022
+ Metric avg l1_freq : 50.3946
1023
+ Metric avg si_sdr : 7.3713
1024
+ Train epoch: 93 Learning rate: 1.8531649206390126e-05
1025
+ Training loss: 0.099267
1026
+ Instr dry sdr: 12.3923 (Std: 5.3252)
1027
+ Instr dry l1_freq: 51.3353 (Std: 15.7117)
1028
+ Instr dry si_sdr: 10.3237 (Std: 10.3709)
1029
+ Instr other sdr: 6.1382 (Std: 3.7639)
1030
+ Instr other l1_freq: 50.9070 (Std: 14.0275)
1031
+ Instr other si_sdr: 5.2708 (Std: 3.7720)
1032
+ Metric avg sdr : 9.2653
1033
+ Metric avg l1_freq : 51.1212
1034
+ Metric avg si_sdr : 7.7973
1035
+ Train epoch: 94 Learning rate: 1.760506674607062e-05
1036
+ Training loss: 0.098203
1037
+ Instr dry sdr: 12.1776 (Std: 5.5474)
1038
+ Instr dry l1_freq: 50.2574 (Std: 16.2700)
1039
+ Instr dry si_sdr: 9.8557 (Std: 11.1696)
1040
+ Instr other sdr: 5.9308 (Std: 3.9415)
1041
+ Instr other l1_freq: 50.1638 (Std: 14.2621)
1042
+ Instr other si_sdr: 5.0634 (Std: 3.9698)
1043
+ Metric avg sdr : 9.0542
1044
+ Metric avg l1_freq : 50.2106
1045
+ Metric avg si_sdr : 7.4596
1046
+ Train epoch: 95 Learning rate: 1.760506674607062e-05
1047
+ Training loss: 0.091828
1048
+ Instr dry sdr: 12.7154 (Std: 5.0649)
1049
+ Instr dry l1_freq: 52.3362 (Std: 15.4446)
1050
+ Instr dry si_sdr: 11.3587 (Std: 8.4150)
1051
+ Instr other sdr: 6.4484 (Std: 3.5644)
1052
+ Instr other l1_freq: 51.5290 (Std: 13.8994)
1053
+ Instr other si_sdr: 5.6174 (Std: 3.5561)
1054
+ Metric avg sdr : 9.5819
1055
+ Metric avg l1_freq : 51.9326
1056
+ Metric avg si_sdr : 8.4881
1057
+ Train epoch: 96 Learning rate: 1.760506674607062e-05
1058
+ Training loss: 0.092210
1059
+ Instr dry sdr: 12.5542 (Std: 5.1640)
1060
+ Instr dry l1_freq: 51.9249 (Std: 15.4726)
1061
+ Instr dry si_sdr: 10.9541 (Std: 9.0623)
1062
+ Instr other sdr: 6.2939 (Std: 3.6601)
1063
+ Instr other l1_freq: 51.3135 (Std: 13.9318)
1064
+ Instr other si_sdr: 5.4368 (Std: 3.6569)
1065
+ Metric avg sdr : 9.4241
1066
+ Metric avg l1_freq : 51.6192
1067
+ Metric avg si_sdr : 8.1955
1068
+ Train epoch: 97 Learning rate: 1.6724813408767087e-05
1069
+ Training loss: 0.092498
1070
+ Instr dry sdr: 12.3693 (Std: 5.3792)
1071
+ Instr dry l1_freq: 51.2841 (Std: 15.7054)
1072
+ Instr dry si_sdr: 10.3668 (Std: 10.1002)
1073
+ Instr other sdr: 6.1246 (Std: 3.8157)
1074
+ Instr other l1_freq: 50.8108 (Std: 13.9787)
1075
+ Instr other si_sdr: 5.2606 (Std: 3.8357)
1076
+ Metric avg sdr : 9.2470
1077
+ Metric avg l1_freq : 51.0475
1078
+ Metric avg si_sdr : 7.8137
1079
+ Train epoch: 98 Learning rate: 1.6724813408767087e-05
1080
+ Training loss: 0.096498
1081
+ Instr dry sdr: 12.7051 (Std: 5.0507)
1082
+ Instr dry l1_freq: 52.3622 (Std: 15.4344)
1083
+ Instr dry si_sdr: 11.5561 (Std: 7.6149)
1084
+ Instr other sdr: 6.4355 (Std: 3.5707)
1085
+ Instr other l1_freq: 51.5607 (Std: 13.8798)
1086
+ Instr other si_sdr: 5.6009 (Std: 3.5600)
1087
+ Metric avg sdr : 9.5703
1088
+ Metric avg l1_freq : 51.9614
1089
+ Metric avg si_sdr : 8.5785
1090
+ Train epoch: 99 Learning rate: 1.6724813408767087e-05
1091
+ Training loss: 0.100907
1092
+ Instr dry sdr: 12.7264 (Std: 4.9980)
1093
+ Instr dry l1_freq: 52.5787 (Std: 15.3304)
1094
+ Instr dry si_sdr: 11.6759 (Std: 7.3167)
1095
+ Instr other sdr: 6.4726 (Std: 3.5190)
1096
+ Instr other l1_freq: 51.7835 (Std: 13.7848)
1097
+ Instr other si_sdr: 5.6326 (Std: 3.5291)
1098
+ Metric avg sdr : 9.5995
1099
+ Metric avg l1_freq : 52.1811
1100
+ Metric avg si_sdr : 8.6543
1101
+ Train epoch: 100 Learning rate: 1.5888572738328732e-05
1102
+ Training loss: 0.092124
1103
+ Instr dry sdr: 12.5440 (Std: 5.1811)
1104
+ Instr dry l1_freq: 52.0072 (Std: 15.5140)
1105
+ Instr dry si_sdr: 11.0584 (Std: 8.6049)
1106
+ Instr other sdr: 6.2961 (Std: 3.6691)
1107
+ Instr other l1_freq: 51.5142 (Std: 13.9767)
1108
+ Instr other si_sdr: 5.4429 (Std: 3.6636)
1109
+ Metric avg sdr : 9.4201
1110
+ Metric avg l1_freq : 51.7607
1111
+ Metric avg si_sdr : 8.2507
1112
+ Train epoch: 101 Learning rate: 1.5888572738328732e-05
1113
+ Training loss: 0.090086
1114
+ Instr dry sdr: 12.5978 (Std: 5.1102)
1115
+ Instr dry l1_freq: 52.2081 (Std: 15.3974)
1116
+ Instr dry si_sdr: 11.2203 (Std: 8.3888)
1117
+ Instr other sdr: 6.3431 (Std: 3.6186)
1118
+ Instr other l1_freq: 51.4018 (Std: 13.8223)
1119
+ Instr other si_sdr: 5.4885 (Std: 3.6250)
1120
+ Metric avg sdr : 9.4705
1121
+ Metric avg l1_freq : 51.8049
1122
+ Metric avg si_sdr : 8.3544
1123
+ Train epoch: 102 Learning rate: 1.5888572738328732e-05
1124
+ Training loss: 0.096567
1125
+ Instr dry sdr: 12.7490 (Std: 4.9942)
1126
+ Instr dry l1_freq: 52.5952 (Std: 15.2602)
1127
+ Instr dry si_sdr: 11.6794 (Std: 7.4370)
1128
+ Instr other sdr: 6.4891 (Std: 3.5021)
1129
+ Instr other l1_freq: 51.8253 (Std: 13.7127)
1130
+ Instr other si_sdr: 5.6486 (Std: 3.5285)
1131
+ Metric avg sdr : 9.6190
1132
+ Metric avg l1_freq : 52.2103
1133
+ Metric avg si_sdr : 8.6640
1134
+ Train epoch: 103 Learning rate: 1.5094144101412296e-05
1135
+ Training loss: 0.096566
1136
+ Instr dry sdr: 12.7887 (Std: 4.9264)
1137
+ Instr dry l1_freq: 52.6449 (Std: 15.1826)
1138
+ Instr dry si_sdr: 11.9172 (Std: 6.7330)
1139
+ Instr other sdr: 6.5313 (Std: 3.4205)
1140
+ Instr other l1_freq: 52.0825 (Std: 13.6229)
1141
+ Instr other si_sdr: 5.6871 (Std: 3.4548)
1142
+ Metric avg sdr : 9.6600
1143
+ Metric avg l1_freq : 52.3637
1144
+ Metric avg si_sdr : 8.8022
1145
+ Train epoch: 104 Learning rate: 1.5094144101412296e-05
1146
+ Training loss: 0.093049
1147
+ Instr dry sdr: 12.6579 (Std: 5.0226)
1148
+ Instr dry l1_freq: 52.3947 (Std: 15.3537)
1149
+ Instr dry si_sdr: 11.4864 (Std: 7.7357)
1150
+ Instr other sdr: 6.4079 (Std: 3.5368)
1151
+ Instr other l1_freq: 51.5370 (Std: 13.7596)
1152
+ Instr other si_sdr: 5.5595 (Std: 3.5535)
1153
+ Metric avg sdr : 9.5329
1154
+ Metric avg l1_freq : 51.9658
1155
+ Metric avg si_sdr : 8.5229
1156
+ Train epoch: 105 Learning rate: 1.5094144101412296e-05
1157
+ Training loss: 0.098858
1158
+ Instr dry sdr: 12.6818 (Std: 5.0442)
1159
+ Instr dry l1_freq: 52.4730 (Std: 15.3907)
1160
+ Instr dry si_sdr: 11.5151 (Std: 7.6824)
1161
+ Instr other sdr: 6.4299 (Std: 3.5690)
1162
+ Instr other l1_freq: 51.6939 (Std: 13.8234)
1163
+ Instr other si_sdr: 5.5873 (Std: 3.5722)
1164
+ Metric avg sdr : 9.5559
1165
+ Metric avg l1_freq : 52.0835
1166
+ Metric avg si_sdr : 8.5512
1167
+ Train epoch: 106 Learning rate: 1.433943689634168e-05
1168
+ Training loss: 0.097726
1169
+ Instr dry sdr: 12.5751 (Std: 5.1911)
1170
+ Instr dry l1_freq: 51.9894 (Std: 15.5097)
1171
+ Instr dry si_sdr: 11.0083 (Std: 8.8566)
1172
+ Instr other sdr: 6.3257 (Std: 3.6878)
1173
+ Instr other l1_freq: 51.5607 (Std: 13.9770)
1174
+ Instr other si_sdr: 5.4763 (Std: 3.6851)
1175
+ Metric avg sdr : 9.4504
1176
+ Metric avg l1_freq : 51.7750
1177
+ Metric avg si_sdr : 8.2423
1178
+ Train epoch: 107 Learning rate: 1.433943689634168e-05
1179
+ Training loss: 0.092017
1180
+ Instr dry sdr: 12.7352 (Std: 5.0253)
1181
+ Instr dry l1_freq: 52.4895 (Std: 15.3276)
1182
+ Instr dry si_sdr: 11.6367 (Std: 7.5058)
1183
+ Instr other sdr: 6.4876 (Std: 3.5314)
1184
+ Instr other l1_freq: 51.7795 (Std: 13.7572)
1185
+ Instr other si_sdr: 5.6532 (Std: 3.5388)
1186
+ Metric avg sdr : 9.6114
1187
+ Metric avg l1_freq : 52.1345
1188
+ Metric avg si_sdr : 8.6450
1189
+ Train epoch: 108 Learning rate: 1.433943689634168e-05
1190
+ Training loss: 0.093190
1191
+ Instr dry sdr: 12.8397 (Std: 4.8776)
1192
+ Instr dry l1_freq: 52.8024 (Std: 15.0866)
1193
+ Instr dry si_sdr: 11.9941 (Std: 6.6657)
1194
+ Instr other sdr: 6.5905 (Std: 3.3897)
1195
+ Instr other l1_freq: 52.0548 (Std: 13.5235)
1196
+ Instr other si_sdr: 5.7513 (Std: 3.4407)
1197
+ Metric avg sdr : 9.7151
1198
+ Metric avg l1_freq : 52.4286
1199
+ Metric avg si_sdr : 8.8727
1200
+ Train epoch: 109 Learning rate: 1.3622465051524595e-05
1201
+ Training loss: 0.097330
1202
+ Instr dry sdr: 12.9161 (Std: 4.7276)
1203
+ Instr dry l1_freq: 53.0033 (Std: 14.7825)
1204
+ Instr dry si_sdr: 12.2813 (Std: 5.8908)
1205
+ Instr other sdr: 6.6614 (Std: 3.2214)
1206
+ Instr other l1_freq: 52.2954 (Std: 13.1528)
1207
+ Instr other si_sdr: 5.8090 (Std: 3.3168)
1208
+ Metric avg sdr : 9.7888
1209
+ Metric avg l1_freq : 52.6493
1210
+ Metric avg si_sdr : 9.0452
1211
+ Train epoch: 110 Learning rate: 1.3622465051524595e-05
1212
+ Training loss: 0.093989
1213
+ Instr dry sdr: 13.0471 (Std: 4.5122)
1214
+ Instr dry l1_freq: 53.2873 (Std: 14.2572)
1215
+ Instr dry si_sdr: 12.5396 (Std: 5.3434)
1216
+ Instr other sdr: 6.7939 (Std: 2.9733)
1217
+ Instr other l1_freq: 52.7643 (Std: 12.6462)
1218
+ Instr other si_sdr: 5.9262 (Std: 3.1305)
1219
+ Metric avg sdr : 9.9205
1220
+ Metric avg l1_freq : 53.0258
1221
+ Metric avg si_sdr : 9.2329
1222
+ Train epoch: 111 Learning rate: 1.3622465051524595e-05
1223
+ Training loss: 0.091716
1224
+ Instr dry sdr: 12.8921 (Std: 4.7097)
1225
+ Instr dry l1_freq: 53.0324 (Std: 14.7172)
1226
+ Instr dry si_sdr: 12.2804 (Std: 5.7996)
1227
+ Instr other sdr: 6.6447 (Std: 3.2111)
1228
+ Instr other l1_freq: 52.1832 (Std: 13.0902)
1229
+ Instr other si_sdr: 5.7832 (Std: 3.3266)
1230
+ Metric avg sdr : 9.7684
1231
+ Metric avg l1_freq : 52.6078
1232
+ Metric avg si_sdr : 9.0318
1233
+ Train epoch: 112 Learning rate: 1.2941341798948365e-05
1234
+ Training loss: 0.093010
1235
+ Instr dry sdr: 12.7339 (Std: 4.9894)
1236
+ Instr dry l1_freq: 52.5628 (Std: 15.2270)
1237
+ Instr dry si_sdr: 11.7856 (Std: 6.9943)
1238
+ Instr other sdr: 6.4929 (Std: 3.4961)
1239
+ Instr other l1_freq: 51.8127 (Std: 13.6453)
1240
+ Instr other si_sdr: 5.6540 (Std: 3.5220)
1241
+ Metric avg sdr : 9.6134
1242
+ Metric avg l1_freq : 52.1878
1243
+ Metric avg si_sdr : 8.7198
1244
+ Train epoch: 113 Learning rate: 1.2941341798948365e-05
1245
+ Training loss: 0.091633
1246
+ Instr dry sdr: 12.8765 (Std: 4.7889)
1247
+ Instr dry l1_freq: 52.9751 (Std: 14.8547)
1248
+ Instr dry si_sdr: 12.1655 (Std: 6.1935)
1249
+ Instr other sdr: 6.6291 (Std: 3.2774)
1250
+ Instr other l1_freq: 52.1851 (Std: 13.2451)
1251
+ Instr other si_sdr: 5.7841 (Std: 3.3589)
1252
+ Metric avg sdr : 9.7528
1253
+ Metric avg l1_freq : 52.5801
1254
+ Metric avg si_sdr : 8.9748
1255
+ Train epoch: 114 Learning rate: 1.2941341798948365e-05
1256
+ Training loss: 0.092634
1257
+ Instr dry sdr: 12.7374 (Std: 5.0415)
1258
+ Instr dry l1_freq: 52.4767 (Std: 15.2749)
1259
+ Instr dry si_sdr: 11.7247 (Std: 7.2032)
1260
+ Instr other sdr: 6.4891 (Std: 3.5588)
1261
+ Instr other l1_freq: 51.8537 (Std: 13.7385)
1262
+ Instr other si_sdr: 5.6611 (Std: 3.5587)
1263
+ Metric avg sdr : 9.6133
1264
+ Metric avg l1_freq : 52.1652
1265
+ Metric avg si_sdr : 8.6929
1266
+ Train epoch: 115 Learning rate: 1.2294274709000947e-05
1267
+ Training loss: 0.096644
1268
+ Instr dry sdr: 12.6075 (Std: 5.1926)
1269
+ Instr dry l1_freq: 52.0390 (Std: 15.4268)
1270
+ Instr dry si_sdr: 11.1788 (Std: 8.4648)
1271
+ Instr other sdr: 6.3639 (Std: 3.6876)
1272
+ Instr other l1_freq: 51.6923 (Std: 13.8963)
1273
+ Instr other si_sdr: 5.5344 (Std: 3.6760)
1274
+ Metric avg sdr : 9.4857
1275
+ Metric avg l1_freq : 51.8657
1276
+ Metric avg si_sdr : 8.3566
1277
+ Train epoch: 116 Learning rate: 1.2294274709000947e-05
1278
+ Training loss: 0.094321
1279
+ Instr dry sdr: 12.6282 (Std: 5.2046)
1280
+ Instr dry l1_freq: 52.0768 (Std: 15.4735)
1281
+ Instr dry si_sdr: 11.1439 (Std: 8.6633)
1282
+ Instr other sdr: 6.3837 (Std: 3.6983)
1283
+ Instr other l1_freq: 51.5680 (Std: 13.9084)
1284
+ Instr other si_sdr: 5.5586 (Std: 3.6887)
1285
+ Metric avg sdr : 9.5060
1286
+ Metric avg l1_freq : 51.8224
1287
+ Metric avg si_sdr : 8.3512
1288
+ Train epoch: 117 Learning rate: 1.2294274709000947e-05
1289
+ Training loss: 0.093851
1290
+ Instr dry sdr: 12.7273 (Std: 5.0907)
1291
+ Instr dry l1_freq: 52.3832 (Std: 15.3896)
1292
+ Instr dry si_sdr: 11.5779 (Std: 7.6525)
1293
+ Instr other sdr: 6.4779 (Std: 3.6006)
1294
+ Instr other l1_freq: 51.7455 (Std: 13.8349)
1295
+ Instr other si_sdr: 5.6541 (Std: 3.5949)
1296
+ Metric avg sdr : 9.6026
1297
+ Metric avg l1_freq : 52.0644
1298
+ Metric avg si_sdr : 8.6160
1299
+ Train epoch: 118 Learning rate: 1.1679560973550899e-05
1300
+ Training loss: 0.095892
1301
+ Instr dry sdr: 12.8512 (Std: 4.9712)
1302
+ Instr dry l1_freq: 52.6765 (Std: 15.2045)
1303
+ Instr dry si_sdr: 12.0067 (Std: 6.6730)
1304
+ Instr other sdr: 6.6058 (Std: 3.4656)
1305
+ Instr other l1_freq: 52.1678 (Std: 13.6668)
1306
+ Instr other si_sdr: 5.7832 (Std: 3.4873)
1307
+ Metric avg sdr : 9.7285
1308
+ Metric avg l1_freq : 52.4222
1309
+ Metric avg si_sdr : 8.8950
1310
+ Train epoch: 119 Learning rate: 1.1679560973550899e-05
1311
+ Training loss: 0.091460
1312
+ Instr dry sdr: 12.7908 (Std: 5.0447)
1313
+ Instr dry l1_freq: 52.5138 (Std: 15.2710)
1314
+ Instr dry si_sdr: 11.8395 (Std: 7.0315)
1315
+ Instr other sdr: 6.5475 (Std: 3.5367)
1316
+ Instr other l1_freq: 52.1575 (Std: 13.7656)
1317
+ Instr other si_sdr: 5.7225 (Std: 3.5484)
1318
+ Metric avg sdr : 9.6691
1319
+ Metric avg l1_freq : 52.3357
1320
+ Metric avg si_sdr : 8.7810
1321
+ Train epoch: 120 Learning rate: 1.1679560973550899e-05
1322
+ Training loss: 0.095307
1323
+ Instr dry sdr: 12.6581 (Std: 5.1660)
1324
+ Instr dry l1_freq: 52.2390 (Std: 15.4570)
1325
+ Instr dry si_sdr: 11.3697 (Std: 8.0572)
1326
+ Instr other sdr: 6.4173 (Std: 3.6589)
1327
+ Instr other l1_freq: 51.7268 (Std: 13.8933)
1328
+ Instr other si_sdr: 5.5903 (Std: 3.6538)
1329
+ Metric avg sdr : 9.5377
1330
+ Metric avg l1_freq : 51.9829
1331
+ Metric avg si_sdr : 8.4800
1332
+ Train epoch: 121 Learning rate: 1.1095582924873354e-05
1333
+ Training loss: 0.092688
1334
+ Instr dry sdr: 12.8339 (Std: 4.9952)
1335
+ Instr dry l1_freq: 52.7786 (Std: 15.2630)
1336
+ Instr dry si_sdr: 11.9348 (Std: 6.8469)
1337
+ Instr other sdr: 6.5914 (Std: 3.5119)
1338
+ Instr other l1_freq: 51.9780 (Std: 13.6690)
1339
+ Instr other si_sdr: 5.7741 (Std: 3.5316)
1340
+ Metric avg sdr : 9.7127
1341
+ Metric avg l1_freq : 52.3783
1342
+ Metric avg si_sdr : 8.8545
1343
+ Train epoch: 122 Learning rate: 1.1095582924873354e-05
1344
+ Training loss: 0.089389
1345
+ Instr dry sdr: 12.6868 (Std: 5.1543)
1346
+ Instr dry l1_freq: 52.2544 (Std: 15.4487)
1347
+ Instr dry si_sdr: 11.3596 (Std: 8.1785)
1348
+ Instr other sdr: 6.4391 (Std: 3.6619)
1349
+ Instr other l1_freq: 51.7883 (Std: 13.9304)
1350
+ Instr other si_sdr: 5.6145 (Std: 3.6520)
1351
+ Metric avg sdr : 9.5629
1352
+ Metric avg l1_freq : 52.0214
1353
+ Metric avg si_sdr : 8.4870
1354
+ Train epoch: 123 Learning rate: 1.1095582924873354e-05
1355
+ Training loss: 0.092695
1356
+ Instr dry sdr: 13.1334 (Std: 4.4033)
1357
+ Instr dry l1_freq: 53.5958 (Std: 13.9688)
1358
+ Instr dry si_sdr: 12.6618 (Std: 5.1663)
1359
+ Instr other sdr: 6.8817 (Std: 2.8615)
1360
+ Instr other l1_freq: 52.8812 (Std: 12.3821)
1361
+ Instr other si_sdr: 6.0108 (Std: 3.0557)
1362
+ Metric avg sdr : 10.0075
1363
+ Metric avg l1_freq : 53.2385
1364
+ Metric avg si_sdr : 9.3363
1365
+ Train epoch: 124 Learning rate: 1.0540803778629686e-05
1366
+ Training loss: 0.090865
1367
+ Instr dry sdr: 12.8815 (Std: 4.9351)
1368
+ Instr dry l1_freq: 52.8738 (Std: 15.1633)
1369
+ Instr dry si_sdr: 12.0065 (Std: 6.7775)
1370
+ Instr other sdr: 6.6391 (Std: 3.4489)
1371
+ Instr other l1_freq: 52.2346 (Std: 13.5820)
1372
+ Instr other si_sdr: 5.8236 (Std: 3.4771)
1373
+ Metric avg sdr : 9.7603
1374
+ Metric avg l1_freq : 52.5542
1375
+ Metric avg si_sdr : 8.9150
1376
+ Train epoch: 125 Learning rate: 1.0540803778629686e-05
1377
+ Training loss: 0.097932
1378
+ Instr dry sdr: 12.8245 (Std: 5.0095)
1379
+ Instr dry l1_freq: 52.7419 (Std: 15.3479)
1380
+ Instr dry si_sdr: 11.7842 (Std: 7.3198)
1381
+ Instr other sdr: 6.5780 (Std: 3.5360)
1382
+ Instr other l1_freq: 52.0653 (Std: 13.7986)
1383
+ Instr other si_sdr: 5.7681 (Std: 3.5339)
1384
+ Metric avg sdr : 9.7012
1385
+ Metric avg l1_freq : 52.4036
1386
+ Metric avg si_sdr : 8.7762
1387
+ Train epoch: 126 Learning rate: 1.0540803778629686e-05
1388
+ Training loss: 0.090215
1389
+ Instr dry sdr: 12.7792 (Std: 5.1109)
1390
+ Instr dry l1_freq: 52.4720 (Std: 15.4843)
1391
+ Instr dry si_sdr: 11.5726 (Std: 7.8367)
1392
+ Instr other sdr: 6.5294 (Std: 3.6304)
1393
+ Instr other l1_freq: 51.8799 (Std: 13.9584)
1394
+ Instr other si_sdr: 5.7211 (Std: 3.6152)
1395
+ Metric avg sdr : 9.6543
1396
+ Metric avg l1_freq : 52.1760
1397
+ Metric avg si_sdr : 8.6469
1398
+ Train epoch: 127 Learning rate: 1.0013763589698201e-05
1399
+ Training loss: 0.089430
1400
+ Instr dry sdr: 12.9886 (Std: 4.7834)
1401
+ Instr dry l1_freq: 53.1443 (Std: 14.8720)
1402
+ Instr dry si_sdr: 12.3267 (Std: 6.0204)
1403
+ Instr other sdr: 6.7426 (Std: 3.2993)
1404
+ Instr other l1_freq: 52.4058 (Std: 13.3023)
1405
+ Instr other si_sdr: 5.9186 (Std: 3.3788)
1406
+ Metric avg sdr : 9.8656
1407
+ Metric avg l1_freq : 52.7750
1408
+ Metric avg si_sdr : 9.1226
1409
+ Train epoch: 128 Learning rate: 1.0013763589698201e-05
1410
+ Training loss: 0.094312
1411
+ Instr dry sdr: 12.8587 (Std: 5.0473)
1412
+ Instr dry l1_freq: 52.7096 (Std: 15.3562)
1413
+ Instr dry si_sdr: 11.8176 (Std: 7.3272)
1414
+ Instr other sdr: 6.6173 (Std: 3.5731)
1415
+ Instr other l1_freq: 52.1558 (Std: 13.8513)
1416
+ Instr other si_sdr: 5.8106 (Std: 3.5761)
1417
+ Metric avg sdr : 9.7380
1418
+ Metric avg l1_freq : 52.4327
1419
+ Metric avg si_sdr : 8.8141
1420
+ Train epoch: 129 Learning rate: 1.0013763589698201e-05
1421
+ Training loss: 0.097339
1422
+ Instr dry sdr: 12.9453 (Std: 4.9302)
1423
+ Instr dry l1_freq: 52.9732 (Std: 15.1751)
1424
+ Instr dry si_sdr: 12.1253 (Std: 6.5995)
1425
+ Instr other sdr: 6.7016 (Std: 3.4517)
1426
+ Instr other l1_freq: 52.3808 (Std: 13.6101)
1427
+ Instr other si_sdr: 5.8944 (Std: 3.4824)
1428
+ Metric avg sdr : 9.8235
1429
+ Metric avg l1_freq : 52.6770
1430
+ Metric avg si_sdr : 9.0099
1431
+ Train epoch: 130 Learning rate: 9.513075410213291e-06
1432
+ Training loss: 0.093759
1433
+ Instr dry sdr: 12.6769 (Std: 5.1848)
1434
+ Instr dry l1_freq: 52.2604 (Std: 15.4905)
1435
+ Instr dry si_sdr: 11.2656 (Std: 8.4064)
1436
+ Instr other sdr: 6.4356 (Std: 3.7061)
1437
+ Instr other l1_freq: 51.7764 (Std: 13.9597)
1438
+ Instr other si_sdr: 5.6129 (Std: 3.6973)
1439
+ Metric avg sdr : 9.5563
1440
+ Metric avg l1_freq : 52.0184
1441
+ Metric avg si_sdr : 8.4393
1442
+ Train epoch: 131 Learning rate: 9.513075410213291e-06
1443
+ Training loss: 0.098356
1444
+ Instr dry sdr: 12.7425 (Std: 5.1650)
1445
+ Instr dry l1_freq: 52.4089 (Std: 15.4820)
1446
+ Instr dry si_sdr: 11.4501 (Std: 8.0911)
1447
+ Instr other sdr: 6.4990 (Std: 3.6775)
1448
+ Instr other l1_freq: 51.8683 (Std: 13.9575)
1449
+ Instr other si_sdr: 5.6862 (Std: 3.6691)
1450
+ Metric avg sdr : 9.6207
1451
+ Metric avg l1_freq : 52.1386
1452
+ Metric avg si_sdr : 8.5681
1453
+ Train epoch: 132 Learning rate: 9.513075410213291e-06
1454
+ Training loss: 0.095287
1455
+ Instr dry sdr: 12.4559 (Std: 5.4014)
1456
+ Instr dry l1_freq: 51.3773 (Std: 15.7209)
1457
+ Instr dry si_sdr: 10.6520 (Std: 9.5616)
1458
+ Instr other sdr: 6.2205 (Std: 3.8719)
1459
+ Instr other l1_freq: 51.2221 (Std: 14.0111)
1460
+ Instr other si_sdr: 5.3885 (Std: 3.8971)
1461
+ Metric avg sdr : 9.3382
1462
+ Metric avg l1_freq : 51.2997
1463
+ Metric avg si_sdr : 8.0202
1464
+ Train epoch: 133 Learning rate: 9.037421639702626e-06
1465
+ Training loss: 0.094915
1466
+ Instr dry sdr: 12.7138 (Std: 5.1674)
1467
+ Instr dry l1_freq: 52.4015 (Std: 15.4349)
1468
+ Instr dry si_sdr: 11.4121 (Std: 8.1166)
1469
+ Instr other sdr: 6.4753 (Std: 3.6846)
1470
+ Instr other l1_freq: 51.8321 (Std: 13.8875)
1471
+ Instr other si_sdr: 5.6583 (Std: 3.6783)
1472
+ Metric avg sdr : 9.5945
1473
+ Metric avg l1_freq : 52.1168
1474
+ Metric avg si_sdr : 8.5352
1475
+ Train epoch: 134 Learning rate: 9.037421639702626e-06
1476
+ Training loss: 0.096393
1477
+ Instr dry sdr: 12.7945 (Std: 5.1220)
1478
+ Instr dry l1_freq: 52.6010 (Std: 15.3983)
1479
+ Instr dry si_sdr: 11.6378 (Std: 7.6964)
1480
+ Instr other sdr: 6.5584 (Std: 3.6388)
1481
+ Instr other l1_freq: 51.9830 (Std: 13.8424)
1482
+ Instr other si_sdr: 5.7504 (Std: 3.6350)
1483
+ Metric avg sdr : 9.6764
1484
+ Metric avg l1_freq : 52.2920
1485
+ Metric avg si_sdr : 8.6941
1486
+ Train epoch: 135 Learning rate: 9.037421639702626e-06
1487
+ Training loss: 0.099597
1488
+ Instr dry sdr: 12.7919 (Std: 5.1178)
1489
+ Instr dry l1_freq: 52.5562 (Std: 15.4150)
1490
+ Instr dry si_sdr: 11.6321 (Std: 7.6935)
1491
+ Instr other sdr: 6.5530 (Std: 3.6320)
1492
+ Instr other l1_freq: 52.0400 (Std: 13.8747)
1493
+ Instr other si_sdr: 5.7409 (Std: 3.6274)
1494
+ Metric avg sdr : 9.6724
1495
+ Metric avg l1_freq : 52.2981
1496
+ Metric avg si_sdr : 8.6865
1497
+ Train epoch: 136 Learning rate: 8.585550557717495e-06
1498
+ Training loss: 0.090295
1499
+ Instr dry sdr: 12.8795 (Std: 4.9871)
1500
+ Instr dry l1_freq: 52.8569 (Std: 15.2440)
1501
+ Instr dry si_sdr: 11.9876 (Std: 6.8381)
1502
+ Instr other sdr: 6.6420 (Std: 3.5077)
1503
+ Instr other l1_freq: 52.2082 (Std: 13.6723)
1504
+ Instr other si_sdr: 5.8337 (Std: 3.5257)
1505
+ Metric avg sdr : 9.7607
1506
+ Metric avg l1_freq : 52.5326
1507
+ Metric avg si_sdr : 8.9106
1508
+ Train epoch: 137 Learning rate: 8.585550557717495e-06
1509
+ Training loss: 0.089884
1510
+ Instr dry sdr: 12.8850 (Std: 5.0298)
1511
+ Instr dry l1_freq: 52.7489 (Std: 15.2832)
1512
+ Instr dry si_sdr: 11.9058 (Std: 7.1376)
1513
+ Instr other sdr: 6.6479 (Std: 3.5415)
1514
+ Instr other l1_freq: 52.2620 (Std: 13.7692)
1515
+ Instr other si_sdr: 5.8442 (Std: 3.5491)
1516
+ Metric avg sdr : 9.7665
1517
+ Metric avg l1_freq : 52.5055
1518
+ Metric avg si_sdr : 8.8750
1519
+ Train epoch: 138 Learning rate: 8.585550557717495e-06
1520
+ Training loss: 0.088977
1521
+ Instr dry sdr: 12.9498 (Std: 4.8888)
1522
+ Instr dry l1_freq: 53.0007 (Std: 15.0386)
1523
+ Instr dry si_sdr: 12.1730 (Std: 6.4540)
1524
+ Instr other sdr: 6.7089 (Std: 3.3994)
1525
+ Instr other l1_freq: 52.4736 (Std: 13.5112)
1526
+ Instr other si_sdr: 5.8944 (Std: 3.4422)
1527
+ Metric avg sdr : 9.8294
1528
+ Metric avg l1_freq : 52.7371
1529
+ Metric avg si_sdr : 9.0337
1530
+ Train epoch: 139 Learning rate: 8.156273029831619e-06
1531
+ Training loss: 0.094878
1532
+ Instr dry sdr: 13.0263 (Std: 4.8388)
1533
+ Instr dry l1_freq: 53.2131 (Std: 14.9437)
1534
+ Instr dry si_sdr: 12.3148 (Std: 6.2340)
1535
+ Instr other sdr: 6.7840 (Std: 3.3348)
1536
+ Instr other l1_freq: 52.5629 (Std: 13.3594)
1537
+ Instr other si_sdr: 5.9767 (Std: 3.3971)
1538
+ Metric avg sdr : 9.9051
1539
+ Metric avg l1_freq : 52.8880
1540
+ Metric avg si_sdr : 9.1457
1541
+ Train epoch: 140 Learning rate: 8.156273029831619e-06
1542
+ Training loss: 0.095048
1543
+ Instr dry sdr: 13.0318 (Std: 4.7903)
1544
+ Instr dry l1_freq: 53.2220 (Std: 14.8110)
1545
+ Instr dry si_sdr: 12.3731 (Std: 6.0319)
1546
+ Instr other sdr: 6.7918 (Std: 3.2833)
1547
+ Instr other l1_freq: 52.5610 (Std: 13.2352)
1548
+ Instr other si_sdr: 5.9756 (Std: 3.3698)
1549
+ Metric avg sdr : 9.9118
1550
+ Metric avg l1_freq : 52.8915
1551
+ Metric avg si_sdr : 9.1744
1552
+ Train epoch: 141 Learning rate: 8.156273029831619e-06
1553
+ Training loss: 0.100407
1554
+ Instr dry sdr: 12.8483 (Std: 5.0633)
1555
+ Instr dry l1_freq: 52.7168 (Std: 15.3261)
1556
+ Instr dry si_sdr: 11.7780 (Std: 7.4301)
1557
+ Instr other sdr: 6.6118 (Std: 3.5896)
1558
+ Instr other l1_freq: 52.0975 (Std: 13.7927)
1559
+ Instr other si_sdr: 5.8122 (Std: 3.5883)
1560
+ Metric avg sdr : 9.7301
1561
+ Metric avg l1_freq : 52.4071
1562
+ Metric avg si_sdr : 8.7951
1563
+ Train epoch: 142 Learning rate: 7.748459378340037e-06
1564
+ Training loss: 0.098264
1565
+ Instr dry sdr: 12.9012 (Std: 5.0163)
1566
+ Instr dry l1_freq: 52.9055 (Std: 15.2636)
1567
+ Instr dry si_sdr: 11.9283 (Std: 7.1281)
1568
+ Instr other sdr: 6.6659 (Std: 3.5414)
1569
+ Instr other l1_freq: 52.2809 (Std: 13.7113)
1570
+ Instr other si_sdr: 5.8686 (Std: 3.5462)
1571
+ Metric avg sdr : 9.7835
1572
+ Metric avg l1_freq : 52.5932
1573
+ Metric avg si_sdr : 8.8984
1574
+ Train epoch: 143 Learning rate: 7.748459378340037e-06
1575
+ Training loss: 0.091402
1576
+ Instr dry sdr: 12.9116 (Std: 5.0022)
1577
+ Instr dry l1_freq: 52.9557 (Std: 15.2628)
1578
+ Instr dry si_sdr: 11.9703 (Std: 7.0275)
1579
+ Instr other sdr: 6.6674 (Std: 3.5289)
1580
+ Instr other l1_freq: 52.2054 (Std: 13.6955)
1581
+ Instr other si_sdr: 5.8712 (Std: 3.5378)
1582
+ Metric avg sdr : 9.7895
1583
+ Metric avg l1_freq : 52.5805
1584
+ Metric avg si_sdr : 8.9208
1585
+ Train epoch: 144 Learning rate: 7.748459378340037e-06
1586
+ Training loss: 0.094382
1587
+ Instr dry sdr: 12.9307 (Std: 4.9579)
1588
+ Instr dry l1_freq: 52.8868 (Std: 15.1344)
1589
+ Instr dry si_sdr: 12.0759 (Std: 6.7416)
1590
+ Instr other sdr: 6.6924 (Std: 3.4671)
1591
+ Instr other l1_freq: 52.4059 (Std: 13.6066)
1592
+ Instr other si_sdr: 5.8890 (Std: 3.4903)
1593
+ Metric avg sdr : 9.8116
1594
+ Metric avg l1_freq : 52.6464
1595
+ Metric avg si_sdr : 8.9825
1596
+ Train epoch: 145 Learning rate: 7.361036409423035e-06
1597
+ Training loss: 0.097014
1598
+ Instr dry sdr: 12.8796 (Std: 5.0266)
1599
+ Instr dry l1_freq: 52.7791 (Std: 15.2656)
1600
+ Instr dry si_sdr: 11.9162 (Std: 7.1001)
1601
+ Instr other sdr: 6.6454 (Std: 3.5405)
1602
+ Instr other l1_freq: 52.2561 (Std: 13.7232)
1603
+ Instr other si_sdr: 5.8467 (Std: 3.5463)
1604
+ Metric avg sdr : 9.7625
1605
+ Metric avg l1_freq : 52.5176
1606
+ Metric avg si_sdr : 8.8815
1607
+ Train epoch: 146 Learning rate: 7.361036409423035e-06
1608
+ Training loss: 0.090039
1609
+ Instr dry sdr: 12.9316 (Std: 4.9567)
1610
+ Instr dry l1_freq: 52.9859 (Std: 15.1807)
1611
+ Instr dry si_sdr: 12.0449 (Std: 6.8583)
1612
+ Instr other sdr: 6.6940 (Std: 3.4768)
1613
+ Instr other l1_freq: 52.3062 (Std: 13.5915)
1614
+ Instr other si_sdr: 5.8962 (Std: 3.4986)
1615
+ Metric avg sdr : 9.8128
1616
+ Metric avg l1_freq : 52.6460
1617
+ Metric avg si_sdr : 8.9706
1618
+ Train epoch: 147 Learning rate: 7.361036409423035e-06
1619
+ Training loss: 0.086740
1620
+ Instr dry sdr: 12.9175 (Std: 5.0477)
1621
+ Instr dry l1_freq: 52.8124 (Std: 15.3145)
1622
+ Instr dry si_sdr: 11.9079 (Std: 7.2653)
1623
+ Instr other sdr: 6.6818 (Std: 3.5602)
1624
+ Instr other l1_freq: 52.3869 (Std: 13.7973)
1625
+ Instr other si_sdr: 5.8909 (Std: 3.5586)
1626
+ Metric avg sdr : 9.7996
1627
+ Metric avg l1_freq : 52.5997
1628
+ Metric avg si_sdr : 8.8994
1629
+ Train epoch: 148 Learning rate: 6.992984588951883e-06
1630
+ Training loss: 0.093262
1631
+ Instr dry sdr: 12.9297 (Std: 4.9863)
1632
+ Instr dry l1_freq: 52.9437 (Std: 15.2206)
1633
+ Instr dry si_sdr: 12.0304 (Std: 6.8971)
1634
+ Instr other sdr: 6.6975 (Std: 3.4967)
1635
+ Instr other l1_freq: 52.3166 (Std: 13.6655)
1636
+ Instr other si_sdr: 5.9003 (Std: 3.5149)
1637
+ Metric avg sdr : 9.8136
1638
+ Metric avg l1_freq : 52.6301
1639
+ Metric avg si_sdr : 8.9654
1640
+ Train epoch: 149 Learning rate: 6.992984588951883e-06
1641
+ Training loss: 0.089209
1642
+ Instr dry sdr: 12.9448 (Std: 4.9485)
1643
+ Instr dry l1_freq: 52.9930 (Std: 15.1825)
1644
+ Instr dry si_sdr: 12.0571 (Std: 6.8559)
1645
+ Instr other sdr: 6.7064 (Std: 3.4694)
1646
+ Instr other l1_freq: 52.3082 (Std: 13.6207)
1647
+ Instr other si_sdr: 5.9045 (Std: 3.4973)
1648
+ Metric avg sdr : 9.8256
1649
+ Metric avg l1_freq : 52.6506
1650
+ Metric avg si_sdr : 8.9808
1651
+ Train epoch: 150 Learning rate: 6.992984588951883e-06
1652
+ Training loss: 0.091250
1653
+ Instr dry sdr: 13.0154 (Std: 4.8329)
1654
+ Instr dry l1_freq: 53.1560 (Std: 14.9594)
1655
+ Instr dry si_sdr: 12.2982 (Std: 6.2567)
1656
+ Instr other sdr: 6.7774 (Std: 3.3365)
1657
+ Instr other l1_freq: 52.5333 (Std: 13.4056)
1658
+ Instr other si_sdr: 5.9671 (Std: 3.4008)
1659
+ Metric avg sdr : 9.8964
1660
+ Metric avg l1_freq : 52.8446
1661
+ Metric avg si_sdr : 9.1326
1662
+ Train epoch: 151 Learning rate: 6.643335359504288e-06
1663
+ Training loss: 0.089285
1664
+ Instr dry sdr: 12.9558 (Std: 5.0116)
1665
+ Instr dry l1_freq: 52.8557 (Std: 15.2873)
1666
+ Instr dry si_sdr: 12.0446 (Std: 6.9359)
1667
+ Instr other sdr: 6.7192 (Std: 3.5214)
1668
+ Instr other l1_freq: 52.2718 (Std: 13.7646)
1669
+ Instr other si_sdr: 5.9287 (Std: 3.5342)
1670
+ Metric avg sdr : 9.8375
1671
+ Metric avg l1_freq : 52.5638
1672
+ Metric avg si_sdr : 8.9866
1673
+ Train epoch: 152 Learning rate: 6.643335359504288e-06
1674
+ Training loss: 0.093715
1675
+ Instr dry sdr: 12.8837 (Std: 5.0895)
1676
+ Instr dry l1_freq: 52.7785 (Std: 15.4209)
1677
+ Instr dry si_sdr: 11.8158 (Std: 7.4261)
1678
+ Instr other sdr: 6.6453 (Std: 3.6111)
1679
+ Instr other l1_freq: 52.1904 (Std: 13.9012)
1680
+ Instr other si_sdr: 5.8519 (Std: 3.6058)
1681
+ Metric avg sdr : 9.7645
1682
+ Metric avg l1_freq : 52.4845
1683
+ Metric avg si_sdr : 8.8338
1684
+ Train epoch: 153 Learning rate: 6.643335359504288e-06
1685
+ Training loss: 0.094634
1686
+ Instr dry sdr: 12.9221 (Std: 5.0286)
1687
+ Instr dry l1_freq: 52.7799 (Std: 15.3241)
1688
+ Instr dry si_sdr: 11.9359 (Std: 7.1872)
1689
+ Instr other sdr: 6.6838 (Std: 3.5465)
1690
+ Instr other l1_freq: 52.2104 (Std: 13.8029)
1691
+ Instr other si_sdr: 5.8925 (Std: 3.5535)
1692
+ Metric avg sdr : 9.8030
1693
+ Metric avg l1_freq : 52.4951
1694
+ Metric avg si_sdr : 8.9142
1695
+ Train epoch: 154 Learning rate: 6.311168591529074e-06
1696
+ Training loss: 0.090340
1697
+ Instr dry sdr: 12.5977 (Std: 5.3607)
1698
+ Instr dry l1_freq: 51.7653 (Std: 15.6438)
1699
+ Instr dry si_sdr: 10.8231 (Std: 9.5397)
1700
+ Instr other sdr: 6.3668 (Std: 3.8433)
1701
+ Instr other l1_freq: 51.4808 (Std: 14.0331)
1702
+ Instr other si_sdr: 5.5531 (Std: 3.8592)
1703
+ Metric avg sdr : 9.4822
1704
+ Metric avg l1_freq : 51.6231
1705
+ Metric avg si_sdr : 8.1881
1706
+ Train epoch: 155 Learning rate: 6.311168591529074e-06
1707
+ Training loss: 0.094673
1708
+ Instr dry sdr: 12.6857 (Std: 5.2910)
1709
+ Instr dry l1_freq: 52.0814 (Std: 15.5593)
1710
+ Instr dry si_sdr: 11.0689 (Std: 9.0954)
1711
+ Instr other sdr: 6.4517 (Std: 3.7781)
1712
+ Instr other l1_freq: 51.7817 (Std: 14.0336)
1713
+ Instr other si_sdr: 5.6439 (Std: 3.7786)
1714
+ Metric avg sdr : 9.5687
1715
+ Metric avg l1_freq : 51.9316
1716
+ Metric avg si_sdr : 8.3564
1717
+ Train epoch: 156 Learning rate: 6.311168591529074e-06
1718
+ Training loss: 0.097054
1719
+ Instr dry sdr: 12.8776 (Std: 5.1045)
1720
+ Instr dry l1_freq: 52.6716 (Std: 15.4472)
1721
+ Instr dry si_sdr: 11.7472 (Std: 7.6424)
1722
+ Instr other sdr: 6.6376 (Std: 3.6234)
1723
+ Instr other l1_freq: 52.1721 (Std: 13.9403)
1724
+ Instr other si_sdr: 5.8483 (Std: 3.6134)
1725
+ Metric avg sdr : 9.7576
1726
+ Metric avg l1_freq : 52.4218
1727
+ Metric avg si_sdr : 8.7978
1728
+ Train epoch: 157 Learning rate: 5.9956101619526196e-06
1729
+ Training loss: 0.086725
1730
+ Instr dry sdr: 12.7567 (Std: 5.1877)
1731
+ Instr dry l1_freq: 52.3955 (Std: 15.5117)
1732
+ Instr dry si_sdr: 11.3619 (Std: 8.4342)
1733
+ Instr other sdr: 6.5151 (Std: 3.7013)
1734
+ Instr other l1_freq: 51.9408 (Std: 13.9934)
1735
+ Instr other si_sdr: 5.7100 (Std: 3.6893)
1736
+ Metric avg sdr : 9.6359
1737
+ Metric avg l1_freq : 52.1681
1738
+ Metric avg si_sdr : 8.5360
1739
+ Train epoch: 158 Learning rate: 5.9956101619526196e-06
1740
+ Training loss: 0.088358
1741
+ Instr dry sdr: 12.8922 (Std: 5.0698)
1742
+ Instr dry l1_freq: 52.7622 (Std: 15.3663)
1743
+ Instr dry si_sdr: 11.8662 (Std: 7.3063)
1744
+ Instr other sdr: 6.6547 (Std: 3.5908)
1745
+ Instr other l1_freq: 52.2345 (Std: 13.8596)
1746
+ Instr other si_sdr: 5.8634 (Std: 3.5879)
1747
+ Metric avg sdr : 9.7735
1748
+ Metric avg l1_freq : 52.4984
1749
+ Metric avg si_sdr : 8.8648
1750
+ Train epoch: 159 Learning rate: 5.9956101619526196e-06
1751
+ Training loss: 0.095690
1752
+ Instr dry sdr: 12.8906 (Std: 5.0697)
1753
+ Instr dry l1_freq: 52.7371 (Std: 15.3624)
1754
+ Instr dry si_sdr: 11.8548 (Std: 7.3340)
1755
+ Instr other sdr: 6.6570 (Std: 3.5914)
1756
+ Instr other l1_freq: 52.2013 (Std: 13.8421)
1757
+ Instr other si_sdr: 5.8675 (Std: 3.5863)
1758
+ Metric avg sdr : 9.7738
1759
+ Metric avg l1_freq : 52.4692
1760
+ Metric avg si_sdr : 8.8611
1761
+ Train epoch: 160 Learning rate: 5.695829653854988e-06
1762
+ Training loss: 0.092579
1763
+ Instr dry sdr: 12.8544 (Std: 5.1251)
1764
+ Instr dry l1_freq: 52.6313 (Std: 15.4354)
1765
+ Instr dry si_sdr: 11.7075 (Std: 7.6726)
1766
+ Instr other sdr: 6.6202 (Std: 3.6433)
1767
+ Instr other l1_freq: 52.2660 (Std: 13.9422)
1768
+ Instr other si_sdr: 5.8278 (Std: 3.6284)
1769
+ Metric avg sdr : 9.7373
1770
+ Metric avg l1_freq : 52.4487
1771
+ Metric avg si_sdr : 8.7676
1772
+ Train epoch: 161 Learning rate: 5.695829653854988e-06
1773
+ Training loss: 0.097362
1774
+ Instr dry sdr: 12.9443 (Std: 5.0329)
1775
+ Instr dry l1_freq: 52.8741 (Std: 15.3065)
1776
+ Instr dry si_sdr: 11.9991 (Std: 7.0508)
1777
+ Instr other sdr: 6.7074 (Std: 3.5450)
1778
+ Instr other l1_freq: 52.4280 (Std: 13.8087)
1779
+ Instr other si_sdr: 5.9183 (Std: 3.5510)
1780
+ Metric avg sdr : 9.8259
1781
+ Metric avg l1_freq : 52.6510
1782
+ Metric avg si_sdr : 8.9587
1783
+ Train epoch: 162 Learning rate: 5.695829653854988e-06
1784
+ Training loss: 0.091346
1785
+ Instr dry sdr: 12.8804 (Std: 5.1055)
1786
+ Instr dry l1_freq: 52.7372 (Std: 15.4190)
1787
+ Instr dry si_sdr: 11.7930 (Std: 7.5043)
1788
+ Instr other sdr: 6.6422 (Std: 3.6245)
1789
+ Instr other l1_freq: 52.2196 (Std: 13.9112)
1790
+ Instr other si_sdr: 5.8524 (Std: 3.6164)
1791
+ Metric avg sdr : 9.7613
1792
+ Metric avg l1_freq : 52.4784
1793
+ Metric avg si_sdr : 8.8227
1794
+ Train epoch: 163 Learning rate: 5.411038171162238e-06
1795
+ Training loss: 0.091542
1796
+ Instr dry sdr: 12.8616 (Std: 5.1150)
1797
+ Instr dry l1_freq: 52.6565 (Std: 15.4280)
1798
+ Instr dry si_sdr: 11.7335 (Std: 7.6210)
1799
+ Instr other sdr: 6.6225 (Std: 3.6385)
1800
+ Instr other l1_freq: 52.1651 (Std: 13.9175)
1801
+ Instr other si_sdr: 5.8302 (Std: 3.6274)
1802
+ Metric avg sdr : 9.7421
1803
+ Metric avg l1_freq : 52.4108
1804
+ Metric avg si_sdr : 8.7819
1805
+ Train epoch: 164 Learning rate: 5.411038171162238e-06
1806
+ Training loss: 0.094600
1807
+ Instr dry sdr: 12.8673 (Std: 5.1267)
1808
+ Instr dry l1_freq: 52.6975 (Std: 15.4468)
1809
+ Instr dry si_sdr: 11.7171 (Std: 7.6899)
1810
+ Instr other sdr: 6.6311 (Std: 3.6509)
1811
+ Instr other l1_freq: 52.1967 (Std: 13.9381)
1812
+ Instr other si_sdr: 5.8418 (Std: 3.6379)
1813
+ Metric avg sdr : 9.7492
1814
+ Metric avg l1_freq : 52.4471
1815
+ Metric avg si_sdr : 8.7795
1816
+ Train epoch: 165 Learning rate: 5.411038171162238e-06
1817
+ Training loss: 0.097291
1818
+ Instr dry sdr: 13.0089 (Std: 4.9530)
1819
+ Instr dry l1_freq: 53.1224 (Std: 15.1908)
1820
+ Instr dry si_sdr: 12.2088 (Std: 6.5852)
1821
+ Instr other sdr: 6.7727 (Std: 3.4620)
1822
+ Instr other l1_freq: 52.4034 (Std: 13.6353)
1823
+ Instr other si_sdr: 5.9884 (Std: 3.4897)
1824
+ Metric avg sdr : 9.8908
1825
+ Metric avg l1_freq : 52.7629
1826
+ Metric avg si_sdr : 9.0986
1827
+ Train epoch: 166 Learning rate: 5.1404862626041264e-06
1828
+ Training loss: 0.094797
1829
+ Instr dry sdr: 13.0049 (Std: 4.9604)
1830
+ Instr dry l1_freq: 53.0771 (Std: 15.1746)
1831
+ Instr dry si_sdr: 12.2103 (Std: 6.5536)
1832
+ Instr other sdr: 6.7714 (Std: 3.4740)
1833
+ Instr other l1_freq: 52.4696 (Std: 13.6267)
1834
+ Instr other si_sdr: 5.9851 (Std: 3.5005)
1835
+ Metric avg sdr : 9.8881
1836
+ Metric avg l1_freq : 52.7734
1837
+ Metric avg si_sdr : 9.0977
1838
+ Train epoch: 167 Learning rate: 5.1404862626041264e-06
1839
+ Training loss: 0.100379
1840
+ Instr dry sdr: 12.9419 (Std: 5.0760)
1841
+ Instr dry l1_freq: 52.8755 (Std: 15.3623)
1842
+ Instr dry si_sdr: 11.9785 (Std: 7.1096)
1843
+ Instr other sdr: 6.7099 (Std: 3.5933)
1844
+ Instr other l1_freq: 52.3490 (Std: 13.8569)
1845
+ Instr other si_sdr: 5.9277 (Std: 3.5915)
1846
+ Metric avg sdr : 9.8259
1847
+ Metric avg l1_freq : 52.6122
1848
+ Metric avg si_sdr : 8.9531
1849
+ Train epoch: 168 Learning rate: 5.1404862626041264e-06
1850
+ Training loss: 0.097326
1851
+ Instr dry sdr: 12.8634 (Std: 5.1823)
1852
+ Instr dry l1_freq: 52.4627 (Std: 15.5339)
1853
+ Instr dry si_sdr: 11.6184 (Std: 7.9900)
1854
+ Instr other sdr: 6.6246 (Std: 3.6947)
1855
+ Instr other l1_freq: 52.0684 (Std: 14.0159)
1856
+ Instr other si_sdr: 5.8370 (Std: 3.6815)
1857
+ Metric avg sdr : 9.7440
1858
+ Metric avg l1_freq : 52.2656
1859
+ Metric avg si_sdr : 8.7277
1860
+ Train epoch: 169 Learning rate: 4.88346194947392e-06
1861
+ Training loss: 0.092164
1862
+ Instr dry sdr: 13.0002 (Std: 4.9702)
1863
+ Instr dry l1_freq: 52.9855 (Std: 15.2065)
1864
+ Instr dry si_sdr: 12.1563 (Std: 6.7287)
1865
+ Instr other sdr: 6.7648 (Std: 3.4724)
1866
+ Instr other l1_freq: 52.3790 (Std: 13.6860)
1867
+ Instr other si_sdr: 5.9752 (Std: 3.5019)
1868
+ Metric avg sdr : 9.8825
1869
+ Metric avg l1_freq : 52.6822
1870
+ Metric avg si_sdr : 9.0658
1871
+ Train epoch: 170 Learning rate: 4.88346194947392e-06
1872
+ Training loss: 0.093825
1873
+ Instr dry sdr: 13.0661 (Std: 4.8525)
1874
+ Instr dry l1_freq: 53.1495 (Std: 14.9630)
1875
+ Instr dry si_sdr: 12.3687 (Std: 6.2087)
1876
+ Instr other sdr: 6.8300 (Std: 3.3398)
1877
+ Instr other l1_freq: 52.6276 (Std: 13.4359)
1878
+ Instr other si_sdr: 6.0311 (Std: 3.4032)
1879
+ Metric avg sdr : 9.9481
1880
+ Metric avg l1_freq : 52.8886
1881
+ Metric avg si_sdr : 9.1999
1882
+ Train epoch: 171 Learning rate: 4.88346194947392e-06
1883
+ Training loss: 0.093724
1884
+ Instr dry sdr: 13.1031 (Std: 4.7939)
1885
+ Instr dry l1_freq: 53.2780 (Std: 14.8401)
1886
+ Instr dry si_sdr: 12.4540 (Std: 6.0211)
1887
+ Instr other sdr: 6.8673 (Std: 3.2787)
1888
+ Instr other l1_freq: 52.7146 (Std: 13.2905)
1889
+ Instr other si_sdr: 6.0661 (Std: 3.3589)
1890
+ Metric avg sdr : 9.9852
1891
+ Metric avg l1_freq : 52.9963
1892
+ Metric avg si_sdr : 9.2600
1893
+ Train epoch: 172 Learning rate: 4.639288852000224e-06
1894
+ Training loss: 0.092525
1895
+ Instr dry sdr: 12.9381 (Std: 4.9911)
1896
+ Instr dry l1_freq: 52.8903 (Std: 15.2267)
1897
+ Instr dry si_sdr: 12.0534 (Std: 6.8457)
1898
+ Instr other sdr: 6.7037 (Std: 3.5046)
1899
+ Instr other l1_freq: 52.3353 (Std: 13.6947)
1900
+ Instr other si_sdr: 5.9037 (Std: 3.5301)
1901
+ Metric avg sdr : 9.8209
1902
+ Metric avg l1_freq : 52.6128
1903
+ Metric avg si_sdr : 8.9786
1904
+ Train epoch: 173 Learning rate: 4.639288852000224e-06
1905
+ Training loss: 0.093124
1906
+ Instr dry sdr: 12.9824 (Std: 4.9425)
1907
+ Instr dry l1_freq: 52.9453 (Std: 15.1376)
1908
+ Instr dry si_sdr: 12.1760 (Std: 6.5795)
1909
+ Instr other sdr: 6.7494 (Std: 3.4530)
1910
+ Instr other l1_freq: 52.4448 (Std: 13.6078)
1911
+ Instr other si_sdr: 5.9532 (Std: 3.4866)
1912
+ Metric avg sdr : 9.8659
1913
+ Metric avg l1_freq : 52.6951
1914
+ Metric avg si_sdr : 9.0646
1915
+ Train epoch: 174 Learning rate: 4.639288852000224e-06
1916
+ Training loss: 0.097429
1917
+ Instr dry sdr: 12.8439 (Std: 5.1313)
1918
+ Instr dry l1_freq: 52.6034 (Std: 15.4667)
1919
+ Instr dry si_sdr: 11.7080 (Std: 7.6385)
1920
+ Instr other sdr: 6.6100 (Std: 3.6477)
1921
+ Instr other l1_freq: 52.0806 (Std: 13.9462)
1922
+ Instr other si_sdr: 5.8138 (Std: 3.6422)
1923
+ Metric avg sdr : 9.7269
1924
+ Metric avg l1_freq : 52.3420
1925
+ Metric avg si_sdr : 8.7609
1926
+ Train epoch: 175 Learning rate: 4.407324409400213e-06
1927
+ Training loss: 0.095886
1928
+ Instr dry sdr: 12.9012 (Std: 5.1151)
1929
+ Instr dry l1_freq: 52.6466 (Std: 15.4250)
1930
+ Instr dry si_sdr: 11.8163 (Std: 7.5033)
1931
+ Instr other sdr: 6.6675 (Std: 3.6232)
1932
+ Instr other l1_freq: 52.2440 (Std: 13.9307)
1933
+ Instr other si_sdr: 5.8780 (Std: 3.6207)
1934
+ Metric avg sdr : 9.7844
1935
+ Metric avg l1_freq : 52.4453
1936
+ Metric avg si_sdr : 8.8472
1937
+ Train epoch: 176 Learning rate: 4.407324409400213e-06
1938
+ Training loss: 0.098037
1939
+ Instr dry sdr: 12.9997 (Std: 4.9698)
1940
+ Instr dry l1_freq: 53.0118 (Std: 15.2028)
1941
+ Instr dry si_sdr: 12.1703 (Std: 6.6775)
1942
+ Instr other sdr: 6.7685 (Std: 3.4791)
1943
+ Instr other l1_freq: 52.4436 (Std: 13.6768)
1944
+ Instr other si_sdr: 5.9799 (Std: 3.5082)
1945
+ Metric avg sdr : 9.8841
1946
+ Metric avg l1_freq : 52.7277
1947
+ Metric avg si_sdr : 9.0751
1948
+ Train epoch: 177 Learning rate: 4.407324409400213e-06
1949
+ Training loss: 0.091857
1950
+ Instr dry sdr: 13.0062 (Std: 4.9606)
1951
+ Instr dry l1_freq: 52.9682 (Std: 15.1650)
1952
+ Instr dry si_sdr: 12.1977 (Std: 6.6035)
1953
+ Instr other sdr: 6.7729 (Std: 3.4661)
1954
+ Instr other l1_freq: 52.4945 (Std: 13.6502)
1955
+ Instr other si_sdr: 5.9841 (Std: 3.4967)
1956
+ Metric avg sdr : 9.8896
1957
+ Metric avg l1_freq : 52.7313
1958
+ Metric avg si_sdr : 9.0909
1959
+ Train epoch: 178 Learning rate: 4.1869581889302025e-06
1960
+ Training loss: 0.098096
1961
+ Instr dry sdr: 12.9103 (Std: 5.0752)
1962
+ Instr dry l1_freq: 52.7613 (Std: 15.3833)
1963
+ Instr dry si_sdr: 11.8924 (Std: 7.2792)
1964
+ Instr other sdr: 6.6783 (Std: 3.5937)
1965
+ Instr other l1_freq: 52.2686 (Std: 13.8729)
1966
+ Instr other si_sdr: 5.8899 (Std: 3.5947)
1967
+ Metric avg sdr : 9.7943
1968
+ Metric avg l1_freq : 52.5150
1969
+ Metric avg si_sdr : 8.8912
1970
+ Train epoch: 179 Learning rate: 4.1869581889302025e-06
1971
+ Training loss: 0.090818
1972
+ Instr dry sdr: 12.9573 (Std: 5.0339)
1973
+ Instr dry l1_freq: 52.8341 (Std: 15.3070)
1974
+ Instr dry si_sdr: 12.0437 (Std: 6.9474)
1975
+ Instr other sdr: 6.7252 (Std: 3.5486)
1976
+ Instr other l1_freq: 52.3729 (Std: 13.7904)
1977
+ Instr other si_sdr: 5.9393 (Std: 3.5573)
1978
+ Metric avg sdr : 9.8412
1979
+ Metric avg l1_freq : 52.6035
1980
+ Metric avg si_sdr : 8.9915
1981
+ Train epoch: 180 Learning rate: 4.1869581889302025e-06
1982
+ Training loss: 0.092787
1983
+ Instr dry sdr: 13.0645 (Std: 4.8733)
1984
+ Instr dry l1_freq: 53.1646 (Std: 15.0069)
1985
+ Instr dry si_sdr: 12.3598 (Std: 6.2420)
1986
+ Instr other sdr: 6.8317 (Std: 3.3670)
1987
+ Instr other l1_freq: 52.6292 (Std: 13.4452)
1988
+ Instr other si_sdr: 6.0409 (Std: 3.4202)
1989
+ Metric avg sdr : 9.9481
1990
+ Metric avg l1_freq : 52.8969
1991
+ Metric avg si_sdr : 9.2003
1992
+ Train epoch: 181 Learning rate: 3.977610279483693e-06
1993
+ Training loss: 0.098106
1994
+ Instr dry sdr: 13.0562 (Std: 4.8652)
1995
+ Instr dry l1_freq: 53.1336 (Std: 14.9775)
1996
+ Instr dry si_sdr: 12.3658 (Std: 6.1905)
1997
+ Instr other sdr: 6.8223 (Std: 3.3560)
1998
+ Instr other l1_freq: 52.5849 (Std: 13.4299)
1999
+ Instr other si_sdr: 6.0296 (Std: 3.4127)
2000
+ Metric avg sdr : 9.9393
2001
+ Metric avg l1_freq : 52.8593
2002
+ Metric avg si_sdr : 9.1977
2003
+ Train epoch: 182 Learning rate: 3.977610279483693e-06
2004
+ Training loss: 0.091860
2005
+ Instr dry sdr: 13.0554 (Std: 4.9438)
2006
+ Instr dry l1_freq: 53.0550 (Std: 15.1489)
2007
+ Instr dry si_sdr: 12.2779 (Std: 6.5097)
2008
+ Instr other sdr: 6.8257 (Std: 3.4539)
2009
+ Instr other l1_freq: 52.5838 (Std: 13.6336)
2010
+ Instr other si_sdr: 6.0443 (Std: 3.4877)
2011
+ Metric avg sdr : 9.9406
2012
+ Metric avg l1_freq : 52.8194
2013
+ Metric avg si_sdr : 9.1611
2014
+ Train epoch: 183 Learning rate: 3.977610279483693e-06
2015
+ Training loss: 0.093953
2016
+ Instr dry sdr: 13.0706 (Std: 4.9253)
2017
+ Instr dry l1_freq: 53.1449 (Std: 15.1201)
2018
+ Instr dry si_sdr: 12.3207 (Std: 6.4185)
2019
+ Instr other sdr: 6.8401 (Std: 3.4303)
2020
+ Instr other l1_freq: 52.6158 (Std: 13.5921)
2021
+ Instr other si_sdr: 6.0593 (Std: 3.4694)
2022
+ Metric avg sdr : 9.9554
2023
+ Metric avg l1_freq : 52.8804
2024
+ Metric avg si_sdr : 9.1900
2025
+ Train epoch: 184 Learning rate: 3.778729765509508e-06
2026
+ Training loss: 0.092398
2027
+ Instr dry sdr: 12.9325 (Std: 5.1393)
2028
+ Instr dry l1_freq: 52.6756 (Std: 15.4664)
2029
+ Instr dry si_sdr: 11.8159 (Std: 7.6263)
2030
+ Instr other sdr: 6.7009 (Std: 3.6478)
2031
+ Instr other l1_freq: 52.2670 (Std: 13.9723)
2032
+ Instr other si_sdr: 5.9239 (Std: 3.6360)
2033
+ Metric avg sdr : 9.8167
2034
+ Metric avg l1_freq : 52.4713
2035
+ Metric avg si_sdr : 8.8699
2036
+ Train epoch: 185 Learning rate: 3.778729765509508e-06
2037
+ Training loss: 0.096717
2038
+ Instr dry sdr: 13.0490 (Std: 4.9449)
2039
+ Instr dry l1_freq: 53.0591 (Std: 15.1325)
2040
+ Instr dry si_sdr: 12.2904 (Std: 6.4531)
2041
+ Instr other sdr: 6.8182 (Std: 3.4383)
2042
+ Instr other l1_freq: 52.6409 (Std: 13.6066)
2043
+ Instr other si_sdr: 6.0330 (Std: 3.4746)
2044
+ Metric avg sdr : 9.9336
2045
+ Metric avg l1_freq : 52.8500
2046
+ Metric avg si_sdr : 9.1617
2047
+ Train epoch: 186 Learning rate: 3.778729765509508e-06
2048
+ Training loss: 0.090671
2049
+ Instr dry sdr: 12.9600 (Std: 5.0693)
2050
+ Instr dry l1_freq: 52.8589 (Std: 15.3583)
2051
+ Instr dry si_sdr: 11.9827 (Std: 7.1793)
2052
+ Instr other sdr: 6.7297 (Std: 3.5853)
2053
+ Instr other l1_freq: 52.3399 (Std: 13.8491)
2054
+ Instr other si_sdr: 5.9496 (Std: 3.5872)
2055
+ Metric avg sdr : 9.8448
2056
+ Metric avg l1_freq : 52.5994
2057
+ Metric avg si_sdr : 8.9661
2058
+ Train epoch: 187 Learning rate: 3.5897932772340322e-06
2059
+ Training loss: 0.093142
2060
+ Instr dry sdr: 12.9661 (Std: 5.0599)
2061
+ Instr dry l1_freq: 52.8261 (Std: 15.3346)
2062
+ Instr dry si_sdr: 12.0146 (Std: 7.0952)
2063
+ Instr other sdr: 6.7368 (Std: 3.5686)
2064
+ Instr other l1_freq: 52.4203 (Std: 13.8399)
2065
+ Instr other si_sdr: 5.9544 (Std: 3.5748)
2066
+ Metric avg sdr : 9.8515
2067
+ Metric avg l1_freq : 52.6232
2068
+ Metric avg si_sdr : 8.9845
2069
+ Train epoch: 188 Learning rate: 3.5897932772340322e-06
2070
+ Training loss: 0.090606
2071
+ Instr dry sdr: 12.9711 (Std: 5.0377)
2072
+ Instr dry l1_freq: 52.8756 (Std: 15.3093)
2073
+ Instr dry si_sdr: 12.0522 (Std: 6.9833)
2074
+ Instr other sdr: 6.7401 (Std: 3.5500)
2075
+ Instr other l1_freq: 52.3409 (Std: 13.7953)
2076
+ Instr other si_sdr: 5.9555 (Std: 3.5622)
2077
+ Metric avg sdr : 9.8556
2078
+ Metric avg l1_freq : 52.6082
2079
+ Metric avg si_sdr : 9.0039
2080
+ Train epoch: 189 Learning rate: 3.5897932772340322e-06
2081
+ Training loss: 0.092085
2082
+ Instr dry sdr: 12.8997 (Std: 5.1578)
2083
+ Instr dry l1_freq: 52.5542 (Std: 15.4780)
2084
+ Instr dry si_sdr: 11.7110 (Std: 7.8564)
2085
+ Instr other sdr: 6.6677 (Std: 3.6722)
2086
+ Instr other l1_freq: 52.2427 (Std: 13.9940)
2087
+ Instr other si_sdr: 5.8874 (Std: 3.6602)
2088
+ Metric avg sdr : 9.7837
2089
+ Metric avg l1_freq : 52.3984
2090
+ Metric avg si_sdr : 8.7992
2091
+ Train epoch: 190 Learning rate: 3.4103036133723303e-06
2092
+ Training loss: 0.093211
2093
+ Instr dry sdr: 12.9938 (Std: 5.0237)
2094
+ Instr dry l1_freq: 52.8923 (Std: 15.2859)
2095
+ Instr dry si_sdr: 12.0941 (Std: 6.9351)
2096
+ Instr other sdr: 6.7622 (Std: 3.5370)
2097
+ Instr other l1_freq: 52.4834 (Std: 13.7856)
2098
+ Instr other si_sdr: 5.9802 (Std: 3.5492)
2099
+ Metric avg sdr : 9.8780
2100
+ Metric avg l1_freq : 52.6879
2101
+ Metric avg si_sdr : 9.0371
2102
+ Train epoch: 191 Learning rate: 3.4103036133723303e-06
2103
+ Training loss: 0.093054
2104
+ Instr dry sdr: 12.9460 (Std: 5.0873)
2105
+ Instr dry l1_freq: 52.7413 (Std: 15.3860)
2106
+ Instr dry si_sdr: 11.9249 (Std: 7.3263)
2107
+ Instr other sdr: 6.7154 (Std: 3.6001)
2108
+ Instr other l1_freq: 52.3403 (Std: 13.8921)
2109
+ Instr other si_sdr: 5.9341 (Std: 3.6000)
2110
+ Metric avg sdr : 9.8307
2111
+ Metric avg l1_freq : 52.5408
2112
+ Metric avg si_sdr : 8.9295
2113
+ Train epoch: 192 Learning rate: 3.4103036133723303e-06
2114
+ Training loss: 0.094299
2115
+ Instr dry sdr: 12.9910 (Std: 5.0396)
2116
+ Instr dry l1_freq: 52.9021 (Std: 15.3228)
2117
+ Instr dry si_sdr: 12.0614 (Std: 7.0331)
2118
+ Instr other sdr: 6.7601 (Std: 3.5478)
2119
+ Instr other l1_freq: 52.4129 (Std: 13.7910)
2120
+ Instr other si_sdr: 5.9815 (Std: 3.5567)
2121
+ Metric avg sdr : 9.8756
2122
+ Metric avg l1_freq : 52.6575
2123
+ Metric avg si_sdr : 9.0214
2124
+ Train epoch: 193 Learning rate: 3.2397884327037135e-06
2125
+ Training loss: 0.099640
2126
+ Instr dry sdr: 12.9444 (Std: 5.0973)
2127
+ Instr dry l1_freq: 52.7317 (Std: 15.4063)
2128
+ Instr dry si_sdr: 11.9180 (Std: 7.3313)
2129
+ Instr other sdr: 6.7131 (Std: 3.6097)
2130
+ Instr other l1_freq: 52.3779 (Std: 13.9158)
2131
+ Instr other si_sdr: 5.9322 (Std: 3.6066)
2132
+ Metric avg sdr : 9.8287
2133
+ Metric avg l1_freq : 52.5548
2134
+ Metric avg si_sdr : 8.9251
2135
+ Train epoch: 194 Learning rate: 3.2397884327037135e-06
2136
+ Training loss: 0.095810
2137
+ Instr dry sdr: 13.0026 (Std: 4.9771)
2138
+ Instr dry l1_freq: 53.0306 (Std: 15.2164)
2139
+ Instr dry si_sdr: 12.1626 (Std: 6.7231)
2140
+ Instr other sdr: 6.7734 (Std: 3.4885)
2141
+ Instr other l1_freq: 52.5501 (Std: 13.6774)
2142
+ Instr other si_sdr: 5.9869 (Std: 3.5131)
2143
+ Metric avg sdr : 9.8880
2144
+ Metric avg l1_freq : 52.7903
2145
+ Metric avg si_sdr : 9.0747
2146
+ Train epoch: 195 Learning rate: 3.2397884327037135e-06
2147
+ Training loss: 0.094791
2148
+ Instr dry sdr: 13.0254 (Std: 4.9660)
2149
+ Instr dry l1_freq: 53.1081 (Std: 15.2067)
2150
+ Instr dry si_sdr: 12.2018 (Std: 6.6747)
2151
+ Instr other sdr: 6.7945 (Std: 3.4757)
2152
+ Instr other l1_freq: 52.5520 (Std: 13.6617)
2153
+ Instr other si_sdr: 6.0107 (Std: 3.5039)
2154
+ Metric avg sdr : 9.9100
2155
+ Metric avg l1_freq : 52.8300
2156
+ Metric avg si_sdr : 9.1063
2157
+ Train epoch: 196 Learning rate: 3.077799011068528e-06
2158
+ Training loss: 0.094022
2159
+ Instr dry sdr: 12.9993 (Std: 5.0386)
2160
+ Instr dry l1_freq: 52.9897 (Std: 15.3230)
2161
+ Instr dry si_sdr: 12.0766 (Std: 7.0081)
2162
+ Instr other sdr: 6.7706 (Std: 3.5526)
2163
+ Instr other l1_freq: 52.5178 (Std: 13.8153)
2164
+ Instr other si_sdr: 5.9919 (Std: 3.5632)
2165
+ Metric avg sdr : 9.8849
2166
+ Metric avg l1_freq : 52.7538
2167
+ Metric avg si_sdr : 9.0343
2168
+ Train epoch: 197 Learning rate: 3.077799011068528e-06
2169
+ Training loss: 0.089808
2170
+ Instr dry sdr: 12.9030 (Std: 5.1382)
2171
+ Instr dry l1_freq: 52.6801 (Std: 15.4695)
2172
+ Instr dry si_sdr: 11.7579 (Std: 7.6938)
2173
+ Instr other sdr: 6.6722 (Std: 3.6608)
2174
+ Instr other l1_freq: 52.2401 (Std: 13.9689)
2175
+ Instr other si_sdr: 5.8911 (Std: 3.6494)
2176
+ Metric avg sdr : 9.7876
2177
+ Metric avg l1_freq : 52.4601
2178
+ Metric avg si_sdr : 8.8245
2179
+ Train epoch: 198 Learning rate: 3.077799011068528e-06
2180
+ Training loss: 0.096411
2181
+ Instr dry sdr: 12.9705 (Std: 5.0528)
2182
+ Instr dry l1_freq: 52.8596 (Std: 15.3333)
2183
+ Instr dry si_sdr: 12.0465 (Std: 6.9944)
2184
+ Instr other sdr: 6.7392 (Std: 3.5682)
2185
+ Instr other l1_freq: 52.4578 (Std: 13.8326)
2186
+ Instr other si_sdr: 5.9563 (Std: 3.5730)
2187
+ Metric avg sdr : 9.8548
2188
+ Metric avg l1_freq : 52.6587
2189
+ Metric avg si_sdr : 9.0014
2190
+ Train epoch: 199 Learning rate: 2.9239090605151014e-06
2191
+ Training loss: 0.089098
2192
+ Instr dry sdr: 12.9623 (Std: 5.0550)
2193
+ Instr dry l1_freq: 52.8382 (Std: 15.3452)
2194
+ Instr dry si_sdr: 12.0264 (Std: 7.0291)
2195
+ Instr other sdr: 6.7334 (Std: 3.5707)
2196
+ Instr other l1_freq: 52.3943 (Std: 13.8395)
2197
+ Instr other si_sdr: 5.9517 (Std: 3.5752)
2198
+ Metric avg sdr : 9.8479
2199
+ Metric avg l1_freq : 52.6162
2200
+ Metric avg si_sdr : 8.9891
2201
+ Train epoch: 200 Learning rate: 2.9239090605151014e-06
2202
+ Training loss: 0.098282
2203
+ Instr dry sdr: 13.0326 (Std: 4.9732)
2204
+ Instr dry l1_freq: 53.0502 (Std: 15.1913)
2205
+ Instr dry si_sdr: 12.2395 (Std: 6.5679)
2206
+ Instr other sdr: 6.8032 (Std: 3.4785)
2207
+ Instr other l1_freq: 52.5799 (Std: 13.6677)
2208
+ Instr other si_sdr: 6.0207 (Std: 3.5036)
2209
+ Metric avg sdr : 9.9179
2210
+ Metric avg l1_freq : 52.8151
2211
+ Metric avg si_sdr : 9.1301
2212
+ Train epoch: 201 Learning rate: 2.9239090605151014e-06
2213
+ Training loss: 0.087879
2214
+ Instr dry sdr: 12.9945 (Std: 5.0327)
2215
+ Instr dry l1_freq: 52.9379 (Std: 15.2901)
2216
+ Instr dry si_sdr: 12.1233 (Std: 6.8245)
2217
+ Instr other sdr: 6.7651 (Std: 3.5438)
2218
+ Instr other l1_freq: 52.4752 (Std: 13.7720)
2219
+ Instr other si_sdr: 5.9853 (Std: 3.5541)
2220
+ Metric avg sdr : 9.8798
2221
+ Metric avg l1_freq : 52.7065
2222
+ Metric avg si_sdr : 9.0543
2223
+ Train epoch: 202 Learning rate: 2.777713607489346e-06
2224
+ Training loss: 0.090894
2225
+ Instr dry sdr: 13.0100 (Std: 5.0205)
2226
+ Instr dry l1_freq: 52.9811 (Std: 15.2788)
2227
+ Instr dry si_sdr: 12.1530 (Std: 6.7770)
2228
+ Instr other sdr: 6.7815 (Std: 3.5375)
2229
+ Instr other l1_freq: 52.5304 (Std: 13.7598)
2230
+ Instr other si_sdr: 6.0045 (Std: 3.5471)
2231
+ Metric avg sdr : 9.8958
2232
+ Metric avg l1_freq : 52.7557
2233
+ Metric avg si_sdr : 9.0787
2234
+ Train epoch: 203 Learning rate: 2.777713607489346e-06
2235
+ Training loss: 0.088920
2236
+ Instr dry sdr: 13.0696 (Std: 4.9347)
2237
+ Instr dry l1_freq: 53.1452 (Std: 15.1341)
2238
+ Instr dry si_sdr: 12.3204 (Std: 6.4161)
2239
+ Instr other sdr: 6.8407 (Std: 3.4438)
2240
+ Instr other l1_freq: 52.6320 (Std: 13.5918)
2241
+ Instr other si_sdr: 6.0610 (Std: 3.4786)
2242
+ Metric avg sdr : 9.9551
2243
+ Metric avg l1_freq : 52.8886
2244
+ Metric avg si_sdr : 9.1907
2245
+ Train epoch: 204 Learning rate: 2.777713607489346e-06
2246
+ Training loss: 0.090892
2247
+ Instr dry sdr: 13.0883 (Std: 4.9306)
2248
+ Instr dry l1_freq: 53.1626 (Std: 15.1372)
2249
+ Instr dry si_sdr: 12.3271 (Std: 6.4656)
2250
+ Instr other sdr: 6.8572 (Std: 3.4362)
2251
+ Instr other l1_freq: 52.6256 (Std: 13.6013)
2252
+ Instr other si_sdr: 6.0819 (Std: 3.4702)
2253
+ Metric avg sdr : 9.9728
2254
+ Metric avg l1_freq : 52.8941
2255
+ Metric avg si_sdr : 9.2045
2256
+ Train epoch: 205 Learning rate: 2.6388279271148787e-06
2257
+ Training loss: 0.091701
2258
+ Instr dry sdr: 13.0661 (Std: 4.9780)
2259
+ Instr dry l1_freq: 53.1265 (Std: 15.2127)
2260
+ Instr dry si_sdr: 12.2558 (Std: 6.6377)
2261
+ Instr other sdr: 6.8350 (Std: 3.4867)
2262
+ Instr other l1_freq: 52.6264 (Std: 13.6752)
2263
+ Instr other si_sdr: 6.0612 (Std: 3.5109)
2264
+ Metric avg sdr : 9.9505
2265
+ Metric avg l1_freq : 52.8764
2266
+ Metric avg si_sdr : 9.1585
2267
+ Train epoch: 206 Learning rate: 2.6388279271148787e-06
2268
+ Training loss: 0.090879
2269
+ Instr dry sdr: 12.9585 (Std: 5.1246)
2270
+ Instr dry l1_freq: 52.7450 (Std: 15.4385)
2271
+ Instr dry si_sdr: 11.8962 (Std: 7.4500)
2272
+ Instr other sdr: 6.7270 (Std: 3.6377)
2273
+ Instr other l1_freq: 52.3973 (Std: 13.9477)
2274
+ Instr other si_sdr: 5.9538 (Std: 3.6284)
2275
+ Metric avg sdr : 9.8427
2276
+ Metric avg l1_freq : 52.5711
2277
+ Metric avg si_sdr : 8.9250
2278
+ Train epoch: 207 Learning rate: 2.6388279271148787e-06
2279
+ Training loss: 0.095157
2280
+ Instr dry sdr: 12.9809 (Std: 5.0754)
2281
+ Instr dry l1_freq: 52.8825 (Std: 15.3618)
2282
+ Instr dry si_sdr: 12.0220 (Std: 7.1175)
2283
+ Instr other sdr: 6.7499 (Std: 3.5911)
2284
+ Instr other l1_freq: 52.4251 (Std: 13.8466)
2285
+ Instr other si_sdr: 5.9755 (Std: 3.5914)
2286
+ Metric avg sdr : 9.8654
2287
+ Metric avg l1_freq : 52.6538
2288
+ Metric avg si_sdr : 8.9987
2289
+ Train epoch: 208 Learning rate: 2.5068865307591348e-06
2290
+ Training loss: 0.097233
2291
+ Instr dry sdr: 12.8730 (Std: 5.1897)
2292
+ Instr dry l1_freq: 52.4444 (Std: 15.5242)
2293
+ Instr dry si_sdr: 11.6652 (Std: 7.8875)
2294
+ Instr other sdr: 6.6421 (Std: 3.7050)
2295
+ Instr other l1_freq: 52.1159 (Std: 14.0080)
2296
+ Instr other si_sdr: 5.8584 (Std: 3.6978)
2297
+ Metric avg sdr : 9.7575
2298
+ Metric avg l1_freq : 52.2802
2299
+ Metric avg si_sdr : 8.7618
2300
+ Train epoch: 209 Learning rate: 2.5068865307591348e-06
2301
+ Training loss: 0.095122
2302
+ Instr dry sdr: 12.8892 (Std: 5.1783)
2303
+ Instr dry l1_freq: 52.5212 (Std: 15.5039)
2304
+ Instr dry si_sdr: 11.7113 (Std: 7.7958)
2305
+ Instr other sdr: 6.6589 (Std: 3.6976)
2306
+ Instr other l1_freq: 52.2186 (Std: 13.9996)
2307
+ Instr other si_sdr: 5.8758 (Std: 3.6899)
2308
+ Metric avg sdr : 9.7741
2309
+ Metric avg l1_freq : 52.3699
2310
+ Metric avg si_sdr : 8.7936
2311
+ Train epoch: 210 Learning rate: 2.5068865307591348e-06
2312
+ Training loss: 0.089211
2313
+ Instr dry sdr: 12.9099 (Std: 5.1559)
2314
+ Instr dry l1_freq: 52.5873 (Std: 15.4712)
2315
+ Instr dry si_sdr: 11.7934 (Std: 7.6123)
2316
+ Instr other sdr: 6.6795 (Std: 3.6688)
2317
+ Instr other l1_freq: 52.3068 (Std: 13.9848)
2318
+ Instr other si_sdr: 5.8986 (Std: 3.6603)
2319
+ Metric avg sdr : 9.7947
2320
+ Metric avg l1_freq : 52.4471
2321
+ Metric avg si_sdr : 8.8460
2322
+ Train epoch: 211 Learning rate: 2.381542204221178e-06
2323
+ Training loss: 0.089044
2324
+ Instr dry sdr: 12.9820 (Std: 5.0812)
2325
+ Instr dry l1_freq: 52.8154 (Std: 15.3662)
2326
+ Instr dry si_sdr: 12.0162 (Std: 7.1432)
2327
+ Instr other sdr: 6.7530 (Std: 3.5918)
2328
+ Instr other l1_freq: 52.4064 (Std: 13.8646)
2329
+ Instr other si_sdr: 5.9778 (Std: 3.5935)
2330
+ Metric avg sdr : 9.8675
2331
+ Metric avg l1_freq : 52.6109
2332
+ Metric avg si_sdr : 8.9970
2333
+ Train epoch: 212 Learning rate: 2.381542204221178e-06
2334
+ Training loss: 0.096083
2335
+ Instr dry sdr: 12.9687 (Std: 5.0974)
2336
+ Instr dry l1_freq: 52.7944 (Std: 15.3968)
2337
+ Instr dry si_sdr: 11.9689 (Std: 7.2526)
2338
+ Instr other sdr: 6.7396 (Std: 3.6083)
2339
+ Instr other l1_freq: 52.3940 (Std: 13.8941)
2340
+ Instr other si_sdr: 5.9640 (Std: 3.6065)
2341
+ Metric avg sdr : 9.8542
2342
+ Metric avg l1_freq : 52.5942
2343
+ Metric avg si_sdr : 8.9664
2344
+ Train epoch: 213 Learning rate: 2.381542204221178e-06
2345
+ Training loss: 0.090508
2346
+ Instr dry sdr: 12.9640 (Std: 5.1021)
2347
+ Instr dry l1_freq: 52.7599 (Std: 15.4043)
2348
+ Instr dry si_sdr: 11.9621 (Std: 7.2544)
2349
+ Instr other sdr: 6.7350 (Std: 3.6160)
2350
+ Instr other l1_freq: 52.3958 (Std: 13.9046)
2351
+ Instr other si_sdr: 5.9594 (Std: 3.6121)
2352
+ Metric avg sdr : 9.8495
2353
+ Metric avg l1_freq : 52.5779
2354
+ Metric avg si_sdr : 8.9608
2355
+ Train epoch: 214 Learning rate: 2.262465094010119e-06
2356
+ Training loss: 0.088221
2357
+ Instr dry sdr: 12.9630 (Std: 5.1008)
2358
+ Instr dry l1_freq: 52.7650 (Std: 15.3975)
2359
+ Instr dry si_sdr: 11.9661 (Std: 7.2363)
2360
+ Instr other sdr: 6.7336 (Std: 3.6175)
2361
+ Instr other l1_freq: 52.3711 (Std: 13.8972)
2362
+ Instr other si_sdr: 5.9574 (Std: 3.6153)
2363
+ Metric avg sdr : 9.8483
2364
+ Metric avg l1_freq : 52.5680
2365
+ Metric avg si_sdr : 8.9618
2366
+ Train epoch: 215 Learning rate: 2.262465094010119e-06
2367
+ Training loss: 0.094517
2368
+ Instr dry sdr: 12.9718 (Std: 5.1046)
2369
+ Instr dry l1_freq: 52.7098 (Std: 15.3992)
2370
+ Instr dry si_sdr: 11.9743 (Std: 7.2457)
2371
+ Instr other sdr: 6.7441 (Std: 3.6193)
2372
+ Instr other l1_freq: 52.4082 (Std: 13.9162)
2373
+ Instr other si_sdr: 5.9692 (Std: 3.6165)
2374
+ Metric avg sdr : 9.8580
2375
+ Metric avg l1_freq : 52.5590
2376
+ Metric avg si_sdr : 8.9718
2377
+ Train epoch: 216 Learning rate: 2.262465094010119e-06
2378
+ Training loss: 0.094498
2379
+ Instr dry sdr: 12.9965 (Std: 5.0813)
2380
+ Instr dry l1_freq: 52.8448 (Std: 15.3691)
2381
+ Instr dry si_sdr: 12.0471 (Std: 7.0910)
2382
+ Instr other sdr: 6.7677 (Std: 3.5996)
2383
+ Instr other l1_freq: 52.4100 (Std: 13.8670)
2384
+ Instr other si_sdr: 5.9949 (Std: 3.6015)
2385
+ Metric avg sdr : 9.8821
2386
+ Metric avg l1_freq : 52.6274
2387
+ Metric avg si_sdr : 9.0210
2388
+ Train epoch: 217 Learning rate: 2.1493418393096127e-06
2389
+ Training loss: 0.090574
2390
+ Instr dry sdr: 13.0157 (Std: 5.0651)
2391
+ Instr dry l1_freq: 52.8412 (Std: 15.3343)
2392
+ Instr dry si_sdr: 12.1058 (Std: 6.9677)
2393
+ Instr other sdr: 6.7868 (Std: 3.5797)
2394
+ Instr other l1_freq: 52.5147 (Std: 13.8538)
2395
+ Instr other si_sdr: 6.0139 (Std: 3.5843)
2396
+ Metric avg sdr : 9.9012
2397
+ Metric avg l1_freq : 52.6779
2398
+ Metric avg si_sdr : 9.0599
2399
+ Train epoch: 218 Learning rate: 2.1493418393096127e-06
2400
+ Training loss: 0.095987
2401
+ Instr dry sdr: 13.1272 (Std: 4.8777)
2402
+ Instr dry l1_freq: 53.2347 (Std: 14.9888)
2403
+ Instr dry si_sdr: 12.4565 (Std: 6.1439)
2404
+ Instr other sdr: 6.8968 (Std: 3.3798)
2405
+ Instr other l1_freq: 52.7438 (Std: 13.4634)
2406
+ Instr other si_sdr: 6.1177 (Std: 3.4341)
2407
+ Metric avg sdr : 10.0120
2408
+ Metric avg l1_freq : 52.9893
2409
+ Metric avg si_sdr : 9.2871
2410
+ Train epoch: 219 Learning rate: 2.1493418393096127e-06
2411
+ Training loss: 0.097191
2412
+ Instr dry sdr: 12.9955 (Std: 5.0869)
2413
+ Instr dry l1_freq: 52.8392 (Std: 15.3718)
2414
+ Instr dry si_sdr: 12.0471 (Std: 7.0882)
2415
+ Instr other sdr: 6.7699 (Std: 3.6042)
2416
+ Instr other l1_freq: 52.4275 (Std: 13.8716)
2417
+ Instr other si_sdr: 5.9983 (Std: 3.6054)
2418
+ Metric avg sdr : 9.8827
2419
+ Metric avg l1_freq : 52.6334
2420
+ Metric avg si_sdr : 9.0227
2421
+ Train epoch: 220 Learning rate: 2.041874747344132e-06
2422
+ Training loss: 0.090682
2423
+ Instr dry sdr: 13.0097 (Std: 5.0718)
2424
+ Instr dry l1_freq: 52.8619 (Std: 15.3403)
2425
+ Instr dry si_sdr: 12.0965 (Std: 6.9746)
2426
+ Instr other sdr: 6.7831 (Std: 3.5878)
2427
+ Instr other l1_freq: 52.5006 (Std: 13.8541)
2428
+ Instr other si_sdr: 6.0114 (Std: 3.5907)
2429
+ Metric avg sdr : 9.8964
2430
+ Metric avg l1_freq : 52.6813
2431
+ Metric avg si_sdr : 9.0540