--- library_name: transformers license: apache-2.0 language: - en tags: - llama-cpp - gguf - quantized - smol - tulu base_model: - SultanR/SmolTulu-1.7b-Instruct pipeline_tag: text-generation --- # SmolTulu-1.7b-Instruct GGUF! This is the GGUF version of [SmolTulu-1.7b-Instruct](https://huggingface.co/SultanR/SmolTulu-1.7b-Instruct), quantized to Q4_K_M! ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo SultanR/SmolTulu-1.7b-Instruct-GGUF --hf-file smoltulu-1.7b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo SultanR/SmolTulu-1.7b-Instruct-GGUF --hf-file smoltulu-1.7b-instruct-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo SultanR/SmolTulu-1.7b-Instruct-GGUF --hf-file smoltulu-1.7b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo SultanR/SmolTulu-1.7b-Instruct-GGUF --hf-file smoltulu-1.7b-instruct-q4_k_m.gguf -c 2048 ```