|
from typing import Dict, List, Any |
|
from PIL import Image |
|
|
|
import os |
|
import json |
|
import torch |
|
import torchvision |
|
from torch.nn import functional as F |
|
|
|
from midjourney200M import Model200M |
|
|
|
class PreTrainedPipeline(): |
|
def __init__(self, path=""): |
|
self.model = Model200M() |
|
ckpt = torch.load(os.path.join(path, "midjourney200M.pt"), map_location=torch.device('cpu')) |
|
self.model.load_state_dict(ckpt) |
|
self.model.eval() |
|
|
|
with open(os.path.join(path, "config.json")) as config: |
|
config = json.load(config) |
|
self.id2label = config["id2label"] |
|
|
|
self.tfm = torchvision.transforms.Compose([ |
|
torchvision.transforms.Resize((640, 640)), |
|
torchvision.transforms.ToTensor(), |
|
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], |
|
std=[0.229, 0.224, 0.225]), |
|
]) |
|
|
|
def __call__(self, inputs: "Image.Image") -> List[Dict[str, Any]]: |
|
""" |
|
Args: |
|
inputs (:obj:`PIL.Image`): |
|
The raw image representation as PIL. |
|
No transformation made whatsoever from the input. Make all necessary transformations here. |
|
Return: |
|
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82} |
|
It is preferred if the returned list is in decreasing `score` order |
|
""" |
|
img = self.tfm(inputs) |
|
return self.predict_from_model(img) |
|
|
|
def predict_from_model(self, img): |
|
y = self.model.forward(img[None, ...]) |
|
y_1 = F.softmax(y, dim=1)[:, 1].cpu().detach().numpy() |
|
y_2 = F.softmax(y, dim=1)[:, 0].cpu().detach().numpy() |
|
labels = [ |
|
{"label": str(self.id2label["0"]), "score": y_1.tolist()[0]}, |
|
{"label": str(self.id2label["1"]), "score": y_2.tolist()[0]}, |
|
] |
|
return labels |
|
|