ppo-LunarLander-v2 / config.json
SwePalm's picture
more training
caebd8d
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f42d97c95e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f42d97c9670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f42d97c9700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f42d97c9790>", "_build": "<function ActorCriticPolicy._build at 0x7f42d97c9820>", "forward": "<function ActorCriticPolicy.forward at 0x7f42d97c98b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f42d97c9940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f42d97c99d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f42d97c9a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f42d97c9af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f42d97c9b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f42d97bfea0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670706940732535524, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAEZ7Jr5eFbA/Rj/VvozlBb9PrJ6+jhhlvgAAAAAAAAAA81OTvXaq/T4Qqs27rhlAvzn+4L0jc+Y8AAAAAAAAAABmgvW8j2YQur20bj2SnYYxAuCTu2619DMAAIA/AACAPzPNhr27YbA/+c2qvvmynb7nXWa9pSQ2vgAAAAAAAAAA5nruPRtjfT/o/mw+Fj//vqdQlD5mMJY+AAAAAAAAAAC6a4u+0FQPPxqiyj4c0Re/PnZSvqFvlz4AAAAAAAAAADOfpTwhc7C8ASoAvqDVHrx2+269XoNfvQAAgD8AAIA/zfuXvOF6vrbW5141996lL2XBu7rqB5e0AACAPwAAgD+avy69j6JeulMVqz1u3KS4ig8MuxqInrcAAIA/AACAPzNpGTxxOqQ/or2wPcVvJr+GKkY8sOFQPAAAAAAAAAAA8+vbvYM8fT1B65U+xA28vhFXMT7OxQk+AAAAAAAAAADaIic+7aYSPwJTpb6pmU+/ZtkAPhqSYL4AAAAAAAAAAOBNPT5/w08/4n7BPf+GAL/Rf+Q+94aUPgAAAAAAAAAAc1GbPTLysT4CCAa+ILoqv12bxz1Z4ha+AAAAAAAAAAAzC9A7XANgum1PLr2bOie2+YBSO4h9ljUAAIA/AACAPzPjnDsZebc+jvAhPT5DMb9ua6o8vmOIPQAAAAAAAAAAzVHbvEjTiboDP3+5q+I5tHp7lLleMJI4AACAPwAAgD8KTIg+HzAuP7aI2b1FCDK/4TcXP8rAmb4AAAAAAAAAAKbGwb1SQig/I2pnvRsNZr+kCRi+khIPPQAAAAAAAAAAM97YPQ13IT/KGLC7AEQhv4jdgz5qVRm+AAAAAAAAAACa9fI7ihS0P75Kcz7HGrG9V8UFu+rM4zwAAAAAAAAAALPjGb0SdP48pjmCPtC9aL6wpRQ+Qqd4PgAAAAAAAAAA4CsivpUmnT51w6I+vckJvy14tb2Cni8+AAAAAAAAAACAkB89OCqUPL59rL4HkJW+BcenviKqjD4AAIA/AAAAAIADEL6vPGY+EWSZPpTj977o70G8RH0VPgAAAAAAAAAAmlcgPQmBCz5S1lK+xX4Uv1GLSL0tx429AAAAAAAAAABabu89zK+pProv5b7OpCu/x59sve01Ub4AAAAAAAAAAPNaUT5J9zE/QKqJvtHfUr/5I3Y+4mGDvgAAAAAAAAAAjWz7PdKlqT5WFp6+d083v+ob5T0+XaW+AAAAAAAAAACAPSu94fSGunJhRTmvAFM0N6RWO76KZbgAAIA/AACAP5oZsLtIz4S6dnFMNWZPmS/7xYo6gt1CtAAAgD8AAIA/gFC9Pc1diD6fSIC+V9Mlv97utDwXlSu+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIgA49qyWckCUhpRSlIwBbJRLpYwBdJRHQMYs42Yv38J1fZQoaAZoCWgPQwjFjVvMz/xwQJSGlFKUaBVLsGgWR0DGLOt9KEnLdX2UKGgGaAloD0MIAmVTrvAGckCUhpRSlGgVS65oFkdAxizwrZJ04nV9lChoBmgJaA9DCPEvgsZM/XBAlIaUUpRoFUudaBZHQMYs9Wi+L3t1fZQoaAZoCWgPQwjds67RcklyQJSGlFKUaBVL12gWR0DGLPlhqj8DdX2UKGgGaAloD0MIWaKzzOK/cUCUhpRSlGgVS7ZoFkdAxi0EjdHlO3V9lChoBmgJaA9DCHQprir7d3JAlIaUUpRoFUuwaBZHQMYtDMW43FV1fZQoaAZoCWgPQwjo24KlelxyQJSGlFKUaBVLwGgWR0DGLRT1CgK4dX2UKGgGaAloD0MIwXPv4RItb0CUhpRSlGgVS5ZoFkdAxi0WkeIVM3V9lChoBmgJaA9DCM6I0t6g83JAlIaUUpRoFUuZaBZHQMYtINUwSJ11fZQoaAZoCWgPQwj+mxcnPpdyQJSGlFKUaBVLl2gWR0DGLSHWvr4WdX2UKGgGaAloD0MI/5O/ewcVckCUhpRSlGgVS5VoFkdAxi0j2gWadHV9lChoBmgJaA9DCM8u3/owD3JAlIaUUpRoFUuMaBZHQMYtJz1CgK51fZQoaAZoCWgPQwjb3m5JDv5xQJSGlFKUaBVLt2gWR0DGLS24gA6udX2UKGgGaAloD0MI5pDUQgmuckCUhpRSlGgVS8ZoFkdAxi0wNy5qd3V9lChoBmgJaA9DCMtN1NIcAXJAlIaUUpRoFUu7aBZHQMYtMZ1eSjh1fZQoaAZoCWgPQwgI46dxb9VyQJSGlFKUaBVLuGgWR0DGLTe47Rv4dX2UKGgGaAloD0MIWWlSCvq0ckCUhpRSlGgVS55oFkdAxi1AaBqbjXV9lChoBmgJaA9DCJEpH4IqhnJAlIaUUpRoFUvxaBZHQMYtTqDkELZ1fZQoaAZoCWgPQwiVnX5Ql+BzQJSGlFKUaBVLuGgWR0DGLU/Hq/ucdX2UKGgGaAloD0MIe2gfK/hFcUCUhpRSlGgVS49oFkdAxi1UdZq20HV9lChoBmgJaA9DCODW3TzVU3NAlIaUUpRoFUu7aBZHQMYtV8TBZZB1fZQoaAZoCWgPQwj9pNqn405zQJSGlFKUaBVLvGgWR0DGLVmIKtxNdX2UKGgGaAloD0MIHhX/dwReckCUhpRSlGgVS7doFkdAxi1dnEETx3V9lChoBmgJaA9DCJiJIqSu1HJAlIaUUpRoFUvCaBZHQMYtZHAIpph1fZQoaAZoCWgPQwiEDrqEQ7pyQJSGlFKUaBVLxGgWR0DGLWc0HhS+dX2UKGgGaAloD0MIrDsW2ySXckCUhpRSlGgVS6FoFkdAxi1mrFwT/XV9lChoBmgJaA9DCG+gwDv5bXNAlIaUUpRoFUvIaBZHQMYtbst03fh1fZQoaAZoCWgPQwiKHCJuzmlyQJSGlFKUaBVLvWgWR0DGLW/Aj6eodX2UKGgGaAloD0MI6V+SyhTgcECUhpRSlGgVS6FoFkdAxi1xoePq93V9lChoBmgJaA9DCO+QYoCETXBAlIaUUpRoFUubaBZHQMYtdbpu/Dd1fZQoaAZoCWgPQwic3VomA3RzQJSGlFKUaBVLzmgWR0DGLXXos7MgdX2UKGgGaAloD0MInDV4XxXsckCUhpRSlGgVS61oFkdAxi2Bkp7TlXV9lChoBmgJaA9DCFiqC3gZNm9AlIaUUpRoFUukaBZHQMYthbLMcIZ1fZQoaAZoCWgPQwjgg9cubWhxQJSGlFKUaBVLomgWR0DGLZCpgkTpdX2UKGgGaAloD0MIXTelvNZycECUhpRSlGgVS7toFkdAxi2f779AHHV9lChoBmgJaA9DCLni4qgc23JAlIaUUpRoFUulaBZHQMYtsHyd4FB1fZQoaAZoCWgPQwhL6C6JM3BxQJSGlFKUaBVLsWgWR0DGLbIcm0E6dX2UKGgGaAloD0MIaJHtfP87cECUhpRSlGgVS5poFkdAxi2ypfhMrXV9lChoBmgJaA9DCOKwNPCjSnFAlIaUUpRoFUvAaBZHQMYtuKEOAiF1fZQoaAZoCWgPQwiVRWEXhU9xQJSGlFKUaBVLmGgWR0DGLb6PQv6CdX2UKGgGaAloD0MIpfRML3Gxc0CUhpRSlGgVS9loFkdAxi3DkXDWLHV9lChoBmgJaA9DCLPROT9FAXJAlIaUUpRoFUuvaBZHQMYty8dgfEJ1fZQoaAZoCWgPQwi8kXnkj71xQJSGlFKUaBVLtWgWR0DGLcxOpKjBdX2UKGgGaAloD0MIQWK7e8BPc0CUhpRSlGgVS8RoFkdAxi3OiVSn+HV9lChoBmgJaA9DCJ+rrdgf+XFAlIaUUpRoFUuyaBZHQMYt1LwnYxt1fZQoaAZoCWgPQwjyYIvdPrZuQJSGlFKUaBVLkGgWR0DGLeBaV2RrdX2UKGgGaAloD0MI1uHoKh1EckCUhpRSlGgVS5RoFkdAxi3iY/mknHV9lChoBmgJaA9DCE3WqIcoSnRAlIaUUpRoFUvNaBZHQMYt4hqj8DV1fZQoaAZoCWgPQwihaYmV0TJxQJSGlFKUaBVLuWgWR0DGLeSsny/cdX2UKGgGaAloD0MIBHRfzqyccUCUhpRSlGgVS4toFkdAxi3pVsk6cXV9lChoBmgJaA9DCFdfXRWoHHBAlIaUUpRoFUuTaBZHQMYt7nPmgap1fZQoaAZoCWgPQwjXbVD7bexwQJSGlFKUaBVLpmgWR0DGLe9VzZHvdX2UKGgGaAloD0MIPusaLYf5ckCUhpRSlGgVS7BoFkdAxi3zRFZxJnV9lChoBmgJaA9DCJc3h2s1aW5AlIaUUpRoFUuNaBZHQMYt+ufNA1N1fZQoaAZoCWgPQwinzTgNkcpzQJSGlFKUaBVLy2gWR0DGLf1wR5C4dX2UKGgGaAloD0MIDECjdKkodECUhpRSlGgVS91oFkdAxi39o8IRiHV9lChoBmgJaA9DCIJwBRTqmnJAlIaUUpRoFUuSaBZHQMYt/yvC/Gl1fZQoaAZoCWgPQwi1UZ0OpL1xQJSGlFKUaBVLmmgWR0DGLgHGKhtcdX2UKGgGaAloD0MI3gVKCixtc0CUhpRSlGgVS7hoFkdAxi4IwFC9iHV9lChoBmgJaA9DCCkIHt8eFHFAlIaUUpRoFUuMaBZHQMYuCg5BC2N1fZQoaAZoCWgPQwjh0Fs8fLlyQJSGlFKUaBVLwmgWR0DGLhu8/UvxdX2UKGgGaAloD0MIGcdI9og0cUCUhpRSlGgVS8FoFkdAxi4i/5+H8HV9lChoBmgJaA9DCDF+GvfmZ3NAlIaUUpRoFUu/aBZHQMYuImAbyYp1fZQoaAZoCWgPQwg3cXK/gwNyQJSGlFKUaBVLnWgWR0DGLiVoHs1LdX2UKGgGaAloD0MI46jcRK1QcUCUhpRSlGgVS7FoFkdAxi4omWMS9XV9lChoBmgJaA9DCEdYVMTp/nJAlIaUUpRoFUvwaBZHQMYuLub7TDx1fZQoaAZoCWgPQwi3ek56H9ZyQJSGlFKUaBVLmmgWR0DGLjFsi0OWdX2UKGgGaAloD0MIbCV0l0Q/ckCUhpRSlGgVS5loFkdAxi5CU+s5n3V9lChoBmgJaA9DCAMF3smnY3JAlIaUUpRoFUufaBZHQMYuRfkmx+t1fZQoaAZoCWgPQwi6nui68DxvQJSGlFKUaBVLmGgWR0DGLkcQkHD8dX2UKGgGaAloD0MIKZSFr+8YcECUhpRSlGgVS5VoFkdAxi5NdVvMr3V9lChoBmgJaA9DCKsi3GRUgnNAlIaUUpRoFUu1aBZHQMYuXV7Y02t1fZQoaAZoCWgPQwjxoURLHqNIQJSGlFKUaBVLX2gWR0DGLmPVRUFTdX2UKGgGaAloD0MIOrAcIQOxTkCUhpRSlGgVS5NoFkdAxi5pqEeyRnV9lChoBmgJaA9DCIaTNH/MQ3NAlIaUUpRoFUuqaBZHQMYuba1stTV1fZQoaAZoCWgPQwg3Gysxj/hwQJSGlFKUaBVLl2gWR0DGLm9u+AVgdX2UKGgGaAloD0MIJeZZSet9cECUhpRSlGgVS5JoFkdAxi5yhIOH33V9lChoBmgJaA9DCCiaB7CIpnFAlIaUUpRoFUu1aBZHQMYudowmE5B1fZQoaAZoCWgPQwgmcOtunntzQJSGlFKUaBVLkmgWR0DGLnls+FDfdX2UKGgGaAloD0MIon2s4LcpcUCUhpRSlGgVS6VoFkdAxi593Ux20XV9lChoBmgJaA9DCKIqptKPZnFAlIaUUpRoFUu4aBZHQMYugia7Vax1fZQoaAZoCWgPQwjsGFdc3AFzQJSGlFKUaBVL0GgWR0DGLoQYaYNRdX2UKGgGaAloD0MITwMGSV+2cECUhpRSlGgVS55oFkdAxi6Jd7fHgnV9lChoBmgJaA9DCBwJNNgUmnJAlIaUUpRoFUvJaBZHQMYuio371qZ1fZQoaAZoCWgPQwhQ4978hgxzQJSGlFKUaBVLp2gWR0DGLo2fChvjdX2UKGgGaAloD0MIcO1EScg+ckCUhpRSlGgVS7doFkdAxi6SGZ/kNnV9lChoBmgJaA9DCNKKbyg8RXJAlIaUUpRoFUuaaBZHQMYukxB3Roh1fZQoaAZoCWgPQwhzucFQhzk+QJSGlFKUaBVLXWgWR0DGLpx2ECeVdX2UKGgGaAloD0MIGhU42UajcUCUhpRSlGgVS6xoFkdAxi6g0Mw1znV9lChoBmgJaA9DCBB1H4AU3XNAlIaUUpRoFUutaBZHQMYuoiUxEfF1fZQoaAZoCWgPQwiJQPUP4vRwQJSGlFKUaBVLo2gWR0DGLqQK+i8GdX2UKGgGaAloD0MI/aIE/cVHckCUhpRSlGgVS7poFkdAxi6q9lEqlXV9lChoBmgJaA9DCI9VSs80b3BAlIaUUpRoFUuaaBZHQMYuro24usd1fZQoaAZoCWgPQwgEyNCxw/BxQJSGlFKUaBVLnmgWR0DGLrvg5zYFdX2UKGgGaAloD0MI+wJ64U5xckCUhpRSlGgVS8doFkdAxi6+VRDTjXV9lChoBmgJaA9DCEwXYvVHlnBAlIaUUpRoFUuraBZHQMYuxf+CK791fZQoaAZoCWgPQwh1IVZ/xO1yQJSGlFKUaBVLsGgWR0DGLtCfxtpFdX2UKGgGaAloD0MIy0v+J/+jdECUhpRSlGgVS7BoFkdAxi7W9DhLoXV9lChoBmgJaA9DCKnaboJvNXNAlIaUUpRoFUvFaBZHQMYu30G3WnV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 744, "n_steps": 1024, "gamma": 0.998, "gae_lambda": 0.97, "ent_coef": 0.005, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}