Szczotar93 commited on
Commit
10768db
1 Parent(s): c670f1f

End of training

Browse files
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - layoutlmv3
8
+ model-index:
9
+ - name: Inkaso_beta
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # Inkaso_beta
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the layoutlmv3 dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0801
21
+ - Creditor address: {'precision': 1.0, 'recall': 0.875, 'f1': 0.9333333333333333, 'number': 48}
22
+ - Creditor name: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34}
23
+ - Creditor proxy: {'precision': 0.8333333333333334, 'recall': 0.8108108108108109, 'f1': 0.8219178082191781, 'number': 37}
24
+ - Debtor address: {'precision': 0.9636363636363636, 'recall': 1.0, 'f1': 0.9814814814814815, 'number': 53}
25
+ - Debtor name: {'precision': 0.9428571428571428, 'recall': 1.0, 'f1': 0.9705882352941176, 'number': 33}
26
+ - Doc id: {'precision': 0.85, 'recall': 0.8947368421052632, 'f1': 0.8717948717948718, 'number': 19}
27
+ - Title: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34}
28
+ - Overall Precision: 0.9492
29
+ - Overall Recall: 0.9419
30
+ - Overall F1: 0.9455
31
+ - Overall Accuracy: 0.9831
32
+
33
+ ## Model description
34
+
35
+ More information needed
36
+
37
+ ## Intended uses & limitations
38
+
39
+ More information needed
40
+
41
+ ## Training and evaluation data
42
+
43
+ More information needed
44
+
45
+ ## Training procedure
46
+
47
+ ### Training hyperparameters
48
+
49
+ The following hyperparameters were used during training:
50
+ - learning_rate: 3e-05
51
+ - train_batch_size: 16
52
+ - eval_batch_size: 8
53
+ - seed: 42
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: linear
56
+ - lr_scheduler_warmup_steps: 10
57
+ - num_epochs: 50
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Creditor address | Creditor name | Creditor proxy | Debtor address | Debtor name | Doc id | Title | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
62
+ |:-------------:|:-------:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
63
+ | 0.4642 | 6.6667 | 20 | 0.2502 | {'precision': 0.782608695652174, 'recall': 0.75, 'f1': 0.7659574468085107, 'number': 48} | {'precision': 0.9354838709677419, 'recall': 0.8529411764705882, 'f1': 0.8923076923076922, 'number': 34} | {'precision': 0.8, 'recall': 0.6486486486486487, 'f1': 0.7164179104477612, 'number': 37} | {'precision': 0.8205128205128205, 'recall': 0.6037735849056604, 'f1': 0.6956521739130435, 'number': 53} | {'precision': 0.95, 'recall': 0.5757575757575758, 'f1': 0.7169811320754716, 'number': 33} | {'precision': 1.0, 'recall': 0.2631578947368421, 'f1': 0.4166666666666667, 'number': 19} | {'precision': 0.8461538461538461, 'recall': 0.3235294117647059, 'f1': 0.46808510638297873, 'number': 34} | 0.8478 | 0.6047 | 0.7059 | 0.9330 |
64
+ | 0.1387 | 13.3333 | 40 | 0.0914 | {'precision': 1.0, 'recall': 0.9166666666666666, 'f1': 0.9565217391304348, 'number': 48} | {'precision': 0.9714285714285714, 'recall': 1.0, 'f1': 0.9855072463768115, 'number': 34} | {'precision': 0.7777777777777778, 'recall': 0.7567567567567568, 'f1': 0.7671232876712328, 'number': 37} | {'precision': 0.9444444444444444, 'recall': 0.9622641509433962, 'f1': 0.9532710280373832, 'number': 53} | {'precision': 0.8918918918918919, 'recall': 1.0, 'f1': 0.9428571428571428, 'number': 33} | {'precision': 0.8095238095238095, 'recall': 0.8947368421052632, 'f1': 0.8500000000000001, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | 0.9234 | 0.9341 | 0.9287 | 0.9795 |
65
+ | 0.0431 | 20.0 | 60 | 0.0774 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 48} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | {'precision': 0.8181818181818182, 'recall': 0.7297297297297297, 'f1': 0.7714285714285715, 'number': 37} | {'precision': 0.9636363636363636, 'recall': 1.0, 'f1': 0.9814814814814815, 'number': 53} | {'precision': 0.9428571428571428, 'recall': 1.0, 'f1': 0.9705882352941176, 'number': 33} | {'precision': 0.7727272727272727, 'recall': 0.8947368421052632, 'f1': 0.8292682926829269, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | 0.9425 | 0.9535 | 0.9480 | 0.9837 |
66
+ | 0.0216 | 26.6667 | 80 | 0.0842 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 48} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | {'precision': 0.7631578947368421, 'recall': 0.7837837837837838, 'f1': 0.7733333333333334, 'number': 37} | {'precision': 0.9454545454545454, 'recall': 0.9811320754716981, 'f1': 0.9629629629629629, 'number': 53} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 33} | {'precision': 0.8095238095238095, 'recall': 0.8947368421052632, 'f1': 0.8500000000000001, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | 0.9286 | 0.9574 | 0.9427 | 0.9825 |
67
+ | 0.0142 | 33.3333 | 100 | 0.0840 | {'precision': 1.0, 'recall': 0.875, 'f1': 0.9333333333333333, 'number': 48} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | {'precision': 0.8333333333333334, 'recall': 0.8108108108108109, 'f1': 0.8219178082191781, 'number': 37} | {'precision': 0.9629629629629629, 'recall': 0.9811320754716981, 'f1': 0.9719626168224299, 'number': 53} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 33} | {'precision': 0.8095238095238095, 'recall': 0.8947368421052632, 'f1': 0.8500000000000001, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | 0.9416 | 0.9380 | 0.9398 | 0.9819 |
68
+ | 0.0105 | 40.0 | 120 | 0.0838 | {'precision': 0.9772727272727273, 'recall': 0.8958333333333334, 'f1': 0.9347826086956522, 'number': 48} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | {'precision': 0.8333333333333334, 'recall': 0.8108108108108109, 'f1': 0.8219178082191781, 'number': 37} | {'precision': 0.9636363636363636, 'recall': 1.0, 'f1': 0.9814814814814815, 'number': 53} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 33} | {'precision': 0.8095238095238095, 'recall': 0.8947368421052632, 'f1': 0.8500000000000001, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | 0.9385 | 0.9457 | 0.9421 | 0.9819 |
69
+ | 0.0081 | 46.6667 | 140 | 0.0801 | {'precision': 1.0, 'recall': 0.875, 'f1': 0.9333333333333333, 'number': 48} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | {'precision': 0.8333333333333334, 'recall': 0.8108108108108109, 'f1': 0.8219178082191781, 'number': 37} | {'precision': 0.9636363636363636, 'recall': 1.0, 'f1': 0.9814814814814815, 'number': 53} | {'precision': 0.9428571428571428, 'recall': 1.0, 'f1': 0.9705882352941176, 'number': 33} | {'precision': 0.85, 'recall': 0.8947368421052632, 'f1': 0.8717948717948718, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} | 0.9492 | 0.9419 | 0.9455 | 0.9831 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.40.1
75
+ - Pytorch 2.3.0+cu118
76
+ - Datasets 2.19.0
77
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/layoutlm-base-uncased",
3
+ "architectures": [
4
+ "LayoutLMForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "O",
12
+ "1": "title",
13
+ "2": "creditor name",
14
+ "3": "creditor address",
15
+ "4": "creditor proxy",
16
+ "5": "debtor name",
17
+ "6": "debtor address",
18
+ "7": "doc id"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "O": 0,
24
+ "creditor address": 3,
25
+ "creditor name": 2,
26
+ "creditor proxy": 4,
27
+ "debtor address": 6,
28
+ "debtor name": 5,
29
+ "doc id": 7,
30
+ "title": 1
31
+ },
32
+ "layer_norm_eps": 1e-12,
33
+ "max_2d_position_embeddings": 1024,
34
+ "max_position_embeddings": 512,
35
+ "model_type": "layoutlm",
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 12,
38
+ "output_past": true,
39
+ "pad_token_id": 0,
40
+ "position_embedding_type": "absolute",
41
+ "torch_dtype": "float32",
42
+ "transformers_version": "4.40.1",
43
+ "type_vocab_size": 2,
44
+ "use_cache": true,
45
+ "vocab_size": 30522
46
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cb115f3bcfc4c55c55e7ccfd4b046b5689c59450cf817a1ed3b29be013076a5
3
+ size 450561288
preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "apply_ocr",
8
+ "ocr_lang",
9
+ "tesseract_config",
10
+ "return_tensors",
11
+ "data_format",
12
+ "input_data_format"
13
+ ],
14
+ "apply_ocr": false,
15
+ "do_resize": true,
16
+ "image_processor_type": "LayoutLMv2ImageProcessor",
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv2Processor",
19
+ "resample": 2,
20
+ "size": {
21
+ "height": 224,
22
+ "width": 224
23
+ },
24
+ "tesseract_config": ""
25
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6088b4ef604cc0239bc18108879f041424580d31aeaba2bd072ae705b563bc27
3
+ size 4984
vocab.txt ADDED
The diff for this file is too large to render. See raw diff