Tamás Ficsor
commited on
Commit
•
fcb65bd
1
Parent(s):
f40b147
adds modeing file
Browse files- modeling_deberta.py +1503 -0
modeling_deberta.py
ADDED
@@ -0,0 +1,1503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Microsoft and the Hugging Face Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch DeBERTa model."""
|
16 |
+
|
17 |
+
from collections.abc import Sequence
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import os, pickle
|
21 |
+
import transformers
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from transformers.activations import ACT2FN
|
28 |
+
from transformers.modeling_outputs import (
|
29 |
+
BaseModelOutput,
|
30 |
+
MaskedLMOutput,
|
31 |
+
QuestionAnsweringModelOutput,
|
32 |
+
SequenceClassifierOutput,
|
33 |
+
TokenClassifierOutput,
|
34 |
+
)
|
35 |
+
from transformers.modeling_utils import PreTrainedModel
|
36 |
+
from transformers.pytorch_utils import softmax_backward_data
|
37 |
+
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
38 |
+
from .configuration_deberta import DebertaConfiguration
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
_CONFIG_FOR_DOC = "DebertaConfiguration"
|
43 |
+
_CHECKPOINT_FOR_DOC = "microsoft/deberta-base"
|
44 |
+
|
45 |
+
# Masked LM docstring
|
46 |
+
_CHECKPOINT_FOR_MASKED_LM = "lsanochkin/deberta-large-feedback"
|
47 |
+
_MASKED_LM_EXPECTED_OUTPUT = "' Paris'"
|
48 |
+
_MASKED_LM_EXPECTED_LOSS = "0.54"
|
49 |
+
|
50 |
+
# QuestionAnswering docstring
|
51 |
+
_CHECKPOINT_FOR_QA = "Palak/microsoft_deberta-large_squad"
|
52 |
+
_QA_EXPECTED_OUTPUT = "' a nice puppet'"
|
53 |
+
_QA_EXPECTED_LOSS = 0.14
|
54 |
+
_QA_TARGET_START_INDEX = 12
|
55 |
+
_QA_TARGET_END_INDEX = 14
|
56 |
+
|
57 |
+
|
58 |
+
class ContextPooler(nn.Module):
|
59 |
+
def __init__(self, config):
|
60 |
+
super().__init__()
|
61 |
+
self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
|
62 |
+
self.dropout = StableDropout(config.pooler_dropout)
|
63 |
+
self.config = config
|
64 |
+
|
65 |
+
def forward(self, hidden_states):
|
66 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
67 |
+
# to the first token.
|
68 |
+
|
69 |
+
context_token = hidden_states[:, 0]
|
70 |
+
context_token = self.dropout(context_token)
|
71 |
+
pooled_output = self.dense(context_token)
|
72 |
+
pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
|
73 |
+
return pooled_output
|
74 |
+
|
75 |
+
@property
|
76 |
+
def output_dim(self):
|
77 |
+
return self.config.hidden_size
|
78 |
+
|
79 |
+
|
80 |
+
class XSoftmax(torch.autograd.Function):
|
81 |
+
"""
|
82 |
+
Masked Softmax which is optimized for saving memory
|
83 |
+
|
84 |
+
Args:
|
85 |
+
input (`torch.tensor`): The input tensor that will apply softmax.
|
86 |
+
mask (`torch.IntTensor`):
|
87 |
+
The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
|
88 |
+
dim (int): The dimension that will apply softmax
|
89 |
+
|
90 |
+
Example:
|
91 |
+
|
92 |
+
```python
|
93 |
+
>>> import torch
|
94 |
+
>>> from transformers.models.deberta.modeling_deberta import XSoftmax
|
95 |
+
|
96 |
+
>>> # Make a tensor
|
97 |
+
>>> x = torch.randn([4, 20, 100])
|
98 |
+
|
99 |
+
>>> # Create a mask
|
100 |
+
>>> mask = (x > 0).int()
|
101 |
+
|
102 |
+
>>> # Specify the dimension to apply softmax
|
103 |
+
>>> dim = -1
|
104 |
+
|
105 |
+
>>> y = XSoftmax.apply(x, mask, dim)
|
106 |
+
```"""
|
107 |
+
|
108 |
+
@staticmethod
|
109 |
+
def forward(ctx, input, mask, dim):
|
110 |
+
ctx.dim = dim
|
111 |
+
rmask = ~(mask.to(torch.bool))
|
112 |
+
|
113 |
+
output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min))
|
114 |
+
output = torch.softmax(output, ctx.dim)
|
115 |
+
output.masked_fill_(rmask, 0)
|
116 |
+
ctx.save_for_backward(output)
|
117 |
+
return output
|
118 |
+
|
119 |
+
@staticmethod
|
120 |
+
def backward(ctx, grad_output):
|
121 |
+
(output,) = ctx.saved_tensors
|
122 |
+
inputGrad = softmax_backward_data(ctx, grad_output, output, ctx.dim, output)
|
123 |
+
return inputGrad, None, None
|
124 |
+
|
125 |
+
@staticmethod
|
126 |
+
def symbolic(g, self, mask, dim):
|
127 |
+
import torch.onnx.symbolic_helper as sym_help
|
128 |
+
from torch.onnx.symbolic_opset9 import masked_fill, softmax
|
129 |
+
|
130 |
+
mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"])
|
131 |
+
r_mask = g.op(
|
132 |
+
"Cast",
|
133 |
+
g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value),
|
134 |
+
to_i=sym_help.cast_pytorch_to_onnx["Bool"],
|
135 |
+
)
|
136 |
+
output = masked_fill(
|
137 |
+
g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min))
|
138 |
+
)
|
139 |
+
output = softmax(g, output, dim)
|
140 |
+
return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool)))
|
141 |
+
|
142 |
+
|
143 |
+
class DropoutContext:
|
144 |
+
def __init__(self):
|
145 |
+
self.dropout = 0
|
146 |
+
self.mask = None
|
147 |
+
self.scale = 1
|
148 |
+
self.reuse_mask = True
|
149 |
+
|
150 |
+
|
151 |
+
def get_mask(input, local_context):
|
152 |
+
if not isinstance(local_context, DropoutContext):
|
153 |
+
dropout = local_context
|
154 |
+
mask = None
|
155 |
+
else:
|
156 |
+
dropout = local_context.dropout
|
157 |
+
dropout *= local_context.scale
|
158 |
+
mask = local_context.mask if local_context.reuse_mask else None
|
159 |
+
|
160 |
+
if dropout > 0 and mask is None:
|
161 |
+
mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool)
|
162 |
+
|
163 |
+
if isinstance(local_context, DropoutContext):
|
164 |
+
if local_context.mask is None:
|
165 |
+
local_context.mask = mask
|
166 |
+
|
167 |
+
return mask, dropout
|
168 |
+
|
169 |
+
|
170 |
+
class XDropout(torch.autograd.Function):
|
171 |
+
"""Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
|
172 |
+
|
173 |
+
@staticmethod
|
174 |
+
def forward(ctx, input, local_ctx):
|
175 |
+
mask, dropout = get_mask(input, local_ctx)
|
176 |
+
ctx.scale = 1.0 / (1 - dropout)
|
177 |
+
if dropout > 0:
|
178 |
+
ctx.save_for_backward(mask)
|
179 |
+
return input.masked_fill(mask, 0) * ctx.scale
|
180 |
+
else:
|
181 |
+
return input
|
182 |
+
|
183 |
+
@staticmethod
|
184 |
+
def backward(ctx, grad_output):
|
185 |
+
if ctx.scale > 1:
|
186 |
+
(mask,) = ctx.saved_tensors
|
187 |
+
return grad_output.masked_fill(mask, 0) * ctx.scale, None
|
188 |
+
else:
|
189 |
+
return grad_output, None
|
190 |
+
|
191 |
+
@staticmethod
|
192 |
+
def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value:
|
193 |
+
from torch.onnx import symbolic_opset12
|
194 |
+
|
195 |
+
dropout_p = local_ctx
|
196 |
+
if isinstance(local_ctx, DropoutContext):
|
197 |
+
dropout_p = local_ctx.dropout
|
198 |
+
# StableDropout only calls this function when training.
|
199 |
+
train = True
|
200 |
+
# TODO: We should check if the opset_version being used to export
|
201 |
+
# is > 12 here, but there's no good way to do that. As-is, if the
|
202 |
+
# opset_version < 12, export will fail with a CheckerError.
|
203 |
+
# Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like:
|
204 |
+
# if opset_version < 12:
|
205 |
+
# return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train)
|
206 |
+
return symbolic_opset12.dropout(g, input, dropout_p, train)
|
207 |
+
|
208 |
+
|
209 |
+
class StableDropout(nn.Module):
|
210 |
+
"""
|
211 |
+
Optimized dropout module for stabilizing the training
|
212 |
+
|
213 |
+
Args:
|
214 |
+
drop_prob (float): the dropout probabilities
|
215 |
+
"""
|
216 |
+
|
217 |
+
def __init__(self, drop_prob):
|
218 |
+
super().__init__()
|
219 |
+
self.drop_prob = drop_prob
|
220 |
+
self.count = 0
|
221 |
+
self.context_stack = None
|
222 |
+
|
223 |
+
def forward(self, x):
|
224 |
+
"""
|
225 |
+
Call the module
|
226 |
+
|
227 |
+
Args:
|
228 |
+
x (`torch.tensor`): The input tensor to apply dropout
|
229 |
+
"""
|
230 |
+
if self.training and self.drop_prob > 0:
|
231 |
+
return XDropout.apply(x, self.get_context())
|
232 |
+
return x
|
233 |
+
|
234 |
+
def clear_context(self):
|
235 |
+
self.count = 0
|
236 |
+
self.context_stack = None
|
237 |
+
|
238 |
+
def init_context(self, reuse_mask=True, scale=1):
|
239 |
+
if self.context_stack is None:
|
240 |
+
self.context_stack = []
|
241 |
+
self.count = 0
|
242 |
+
for c in self.context_stack:
|
243 |
+
c.reuse_mask = reuse_mask
|
244 |
+
c.scale = scale
|
245 |
+
|
246 |
+
def get_context(self):
|
247 |
+
if self.context_stack is not None:
|
248 |
+
if self.count >= len(self.context_stack):
|
249 |
+
self.context_stack.append(DropoutContext())
|
250 |
+
ctx = self.context_stack[self.count]
|
251 |
+
ctx.dropout = self.drop_prob
|
252 |
+
self.count += 1
|
253 |
+
return ctx
|
254 |
+
else:
|
255 |
+
return self.drop_prob
|
256 |
+
|
257 |
+
|
258 |
+
class DebertaLayerNorm(nn.Module):
|
259 |
+
"""LayerNorm module in the TF style (epsilon inside the square root)."""
|
260 |
+
|
261 |
+
def __init__(self, size, eps=1e-12):
|
262 |
+
super().__init__()
|
263 |
+
self.weight = nn.Parameter(torch.ones(size))
|
264 |
+
self.bias = nn.Parameter(torch.zeros(size))
|
265 |
+
self.variance_epsilon = eps
|
266 |
+
|
267 |
+
def forward(self, hidden_states):
|
268 |
+
input_type = hidden_states.dtype
|
269 |
+
hidden_states = hidden_states.float()
|
270 |
+
mean = hidden_states.mean(-1, keepdim=True)
|
271 |
+
variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
|
272 |
+
hidden_states = (hidden_states - mean) / torch.sqrt(variance + self.variance_epsilon)
|
273 |
+
hidden_states = hidden_states.to(input_type)
|
274 |
+
y = self.weight * hidden_states + self.bias
|
275 |
+
return y
|
276 |
+
|
277 |
+
|
278 |
+
class DebertaSelfOutput(nn.Module):
|
279 |
+
def __init__(self, config):
|
280 |
+
super().__init__()
|
281 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
282 |
+
self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
|
283 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
284 |
+
|
285 |
+
def forward(self, hidden_states, input_tensor):
|
286 |
+
hidden_states = self.dense(hidden_states)
|
287 |
+
hidden_states = self.dropout(hidden_states)
|
288 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
289 |
+
return hidden_states
|
290 |
+
|
291 |
+
|
292 |
+
class DebertaAttention(nn.Module):
|
293 |
+
def __init__(self, config):
|
294 |
+
super().__init__()
|
295 |
+
self.self = DisentangledSelfAttention(config)
|
296 |
+
self.output = DebertaSelfOutput(config)
|
297 |
+
self.config = config
|
298 |
+
|
299 |
+
def forward(
|
300 |
+
self,
|
301 |
+
hidden_states,
|
302 |
+
attention_mask,
|
303 |
+
output_attentions=False,
|
304 |
+
query_states=None,
|
305 |
+
relative_pos=None,
|
306 |
+
rel_embeddings=None,
|
307 |
+
):
|
308 |
+
self_output = self.self(
|
309 |
+
hidden_states,
|
310 |
+
attention_mask,
|
311 |
+
output_attentions,
|
312 |
+
query_states=query_states,
|
313 |
+
relative_pos=relative_pos,
|
314 |
+
rel_embeddings=rel_embeddings,
|
315 |
+
)
|
316 |
+
if output_attentions:
|
317 |
+
self_output, att_matrix = self_output
|
318 |
+
if query_states is None:
|
319 |
+
query_states = hidden_states
|
320 |
+
attention_output = self.output(self_output, query_states)
|
321 |
+
|
322 |
+
if output_attentions:
|
323 |
+
return (attention_output, att_matrix)
|
324 |
+
else:
|
325 |
+
return attention_output
|
326 |
+
|
327 |
+
|
328 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Deberta
|
329 |
+
class DebertaIntermediate(nn.Module):
|
330 |
+
def __init__(self, config):
|
331 |
+
super().__init__()
|
332 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
333 |
+
if isinstance(config.hidden_act, str):
|
334 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
335 |
+
else:
|
336 |
+
self.intermediate_act_fn = config.hidden_act
|
337 |
+
|
338 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
339 |
+
hidden_states = self.dense(hidden_states)
|
340 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
341 |
+
return hidden_states
|
342 |
+
|
343 |
+
|
344 |
+
class DebertaOutput(nn.Module):
|
345 |
+
def __init__(self, config):
|
346 |
+
super().__init__()
|
347 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
348 |
+
self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
|
349 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
350 |
+
self.config = config
|
351 |
+
|
352 |
+
def forward(self, hidden_states, input_tensor):
|
353 |
+
hidden_states = self.dense(hidden_states)
|
354 |
+
hidden_states = self.dropout(hidden_states)
|
355 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
356 |
+
return hidden_states
|
357 |
+
|
358 |
+
|
359 |
+
class DebertaLayer(nn.Module):
|
360 |
+
def __init__(self, config):
|
361 |
+
super().__init__()
|
362 |
+
self.attention = DebertaAttention(config)
|
363 |
+
self.intermediate = DebertaIntermediate(config)
|
364 |
+
self.output = DebertaOutput(config)
|
365 |
+
|
366 |
+
def forward(
|
367 |
+
self,
|
368 |
+
hidden_states,
|
369 |
+
attention_mask,
|
370 |
+
query_states=None,
|
371 |
+
relative_pos=None,
|
372 |
+
rel_embeddings=None,
|
373 |
+
output_attentions=False,
|
374 |
+
):
|
375 |
+
attention_output = self.attention(
|
376 |
+
hidden_states,
|
377 |
+
attention_mask,
|
378 |
+
output_attentions=output_attentions,
|
379 |
+
query_states=query_states,
|
380 |
+
relative_pos=relative_pos,
|
381 |
+
rel_embeddings=rel_embeddings,
|
382 |
+
)
|
383 |
+
if output_attentions:
|
384 |
+
attention_output, att_matrix = attention_output
|
385 |
+
intermediate_output = self.intermediate(attention_output)
|
386 |
+
layer_output = self.output(intermediate_output, attention_output)
|
387 |
+
if output_attentions:
|
388 |
+
return (layer_output, att_matrix)
|
389 |
+
else:
|
390 |
+
return layer_output
|
391 |
+
|
392 |
+
|
393 |
+
class DebertaEncoder(nn.Module):
|
394 |
+
"""Modified BertEncoder with relative position bias support"""
|
395 |
+
|
396 |
+
def __init__(self, config):
|
397 |
+
super().__init__()
|
398 |
+
self.layer = nn.ModuleList([DebertaLayer(config) for _ in range(config.num_hidden_layers)])
|
399 |
+
self.relative_attention = getattr(config, "relative_attention", False)
|
400 |
+
if self.relative_attention:
|
401 |
+
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
402 |
+
if self.max_relative_positions < 1:
|
403 |
+
self.max_relative_positions = config.max_position_embeddings
|
404 |
+
self.rel_embeddings = nn.Embedding(self.max_relative_positions * 2, config.hidden_size)
|
405 |
+
self.gradient_checkpointing = False
|
406 |
+
|
407 |
+
def get_rel_embedding(self):
|
408 |
+
rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
|
409 |
+
return rel_embeddings
|
410 |
+
|
411 |
+
def get_attention_mask(self, attention_mask):
|
412 |
+
if attention_mask.dim() <= 2:
|
413 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
414 |
+
attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
|
415 |
+
elif attention_mask.dim() == 3:
|
416 |
+
attention_mask = attention_mask.unsqueeze(1)
|
417 |
+
|
418 |
+
return attention_mask
|
419 |
+
|
420 |
+
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
|
421 |
+
if self.relative_attention and relative_pos is None:
|
422 |
+
q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
|
423 |
+
relative_pos = build_relative_position(q, hidden_states.size(-2), hidden_states.device)
|
424 |
+
return relative_pos
|
425 |
+
|
426 |
+
def forward(
|
427 |
+
self,
|
428 |
+
hidden_states,
|
429 |
+
attention_mask,
|
430 |
+
output_hidden_states=True,
|
431 |
+
output_attentions=False,
|
432 |
+
query_states=None,
|
433 |
+
relative_pos=None,
|
434 |
+
return_dict=True,
|
435 |
+
):
|
436 |
+
attention_mask = self.get_attention_mask(attention_mask)
|
437 |
+
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
|
438 |
+
|
439 |
+
all_hidden_states = () if output_hidden_states else None
|
440 |
+
all_attentions = () if output_attentions else None
|
441 |
+
|
442 |
+
if isinstance(hidden_states, Sequence):
|
443 |
+
next_kv = hidden_states[0]
|
444 |
+
else:
|
445 |
+
next_kv = hidden_states
|
446 |
+
rel_embeddings = self.get_rel_embedding()
|
447 |
+
for i, layer_module in enumerate(self.layer):
|
448 |
+
if output_hidden_states:
|
449 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
450 |
+
|
451 |
+
if self.gradient_checkpointing and self.training:
|
452 |
+
hidden_states = self._gradient_checkpointing_func(
|
453 |
+
layer_module.__call__,
|
454 |
+
next_kv,
|
455 |
+
attention_mask,
|
456 |
+
query_states,
|
457 |
+
relative_pos,
|
458 |
+
rel_embeddings,
|
459 |
+
output_attentions,
|
460 |
+
)
|
461 |
+
else:
|
462 |
+
hidden_states = layer_module(
|
463 |
+
next_kv,
|
464 |
+
attention_mask,
|
465 |
+
query_states=query_states,
|
466 |
+
relative_pos=relative_pos,
|
467 |
+
rel_embeddings=rel_embeddings,
|
468 |
+
output_attentions=output_attentions,
|
469 |
+
)
|
470 |
+
|
471 |
+
if output_attentions:
|
472 |
+
hidden_states, att_m = hidden_states
|
473 |
+
|
474 |
+
if query_states is not None:
|
475 |
+
query_states = hidden_states
|
476 |
+
if isinstance(hidden_states, Sequence):
|
477 |
+
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
|
478 |
+
else:
|
479 |
+
next_kv = hidden_states
|
480 |
+
|
481 |
+
if output_attentions:
|
482 |
+
all_attentions = all_attentions + (att_m,)
|
483 |
+
|
484 |
+
if output_hidden_states:
|
485 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
486 |
+
|
487 |
+
if not return_dict:
|
488 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
489 |
+
return BaseModelOutput(
|
490 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
491 |
+
)
|
492 |
+
|
493 |
+
|
494 |
+
def build_relative_position(query_size, key_size, device):
|
495 |
+
"""
|
496 |
+
Build relative position according to the query and key
|
497 |
+
|
498 |
+
We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
|
499 |
+
\\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
|
500 |
+
P_k\\)
|
501 |
+
|
502 |
+
Args:
|
503 |
+
query_size (int): the length of query
|
504 |
+
key_size (int): the length of key
|
505 |
+
|
506 |
+
Return:
|
507 |
+
`torch.LongTensor`: A tensor with shape [1, query_size, key_size]
|
508 |
+
|
509 |
+
"""
|
510 |
+
|
511 |
+
q_ids = torch.arange(query_size, dtype=torch.long, device=device)
|
512 |
+
k_ids = torch.arange(key_size, dtype=torch.long, device=device)
|
513 |
+
rel_pos_ids = q_ids[:, None] - k_ids.view(1, -1).repeat(query_size, 1)
|
514 |
+
rel_pos_ids = rel_pos_ids[:query_size, :]
|
515 |
+
rel_pos_ids = rel_pos_ids.unsqueeze(0)
|
516 |
+
return rel_pos_ids
|
517 |
+
|
518 |
+
|
519 |
+
@torch.jit.script
|
520 |
+
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
|
521 |
+
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])
|
522 |
+
|
523 |
+
|
524 |
+
@torch.jit.script
|
525 |
+
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
|
526 |
+
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])
|
527 |
+
|
528 |
+
|
529 |
+
@torch.jit.script
|
530 |
+
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
|
531 |
+
return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))
|
532 |
+
|
533 |
+
|
534 |
+
class DisentangledSelfAttention(nn.Module):
|
535 |
+
"""
|
536 |
+
Disentangled self-attention module
|
537 |
+
|
538 |
+
Parameters:
|
539 |
+
config (`str`):
|
540 |
+
A model config class instance with the configuration to build a new model. The schema is similar to
|
541 |
+
*BertConfig*, for more details, please refer [`DebertaConfig`]
|
542 |
+
|
543 |
+
"""
|
544 |
+
|
545 |
+
def __init__(self, config):
|
546 |
+
super().__init__()
|
547 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
548 |
+
raise ValueError(
|
549 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
550 |
+
f"heads ({config.num_attention_heads})"
|
551 |
+
)
|
552 |
+
self.num_attention_heads = config.num_attention_heads
|
553 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
554 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
555 |
+
self.in_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=False)
|
556 |
+
self.q_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float))
|
557 |
+
self.v_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float))
|
558 |
+
self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
|
559 |
+
|
560 |
+
self.relative_attention = getattr(config, "relative_attention", False)
|
561 |
+
self.talking_head = getattr(config, "talking_head", False)
|
562 |
+
|
563 |
+
if self.talking_head:
|
564 |
+
self.head_logits_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
|
565 |
+
self.head_weights_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
|
566 |
+
|
567 |
+
if self.relative_attention:
|
568 |
+
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
569 |
+
if self.max_relative_positions < 1:
|
570 |
+
self.max_relative_positions = config.max_position_embeddings
|
571 |
+
self.pos_dropout = StableDropout(config.hidden_dropout_prob)
|
572 |
+
|
573 |
+
if "c2p" in self.pos_att_type:
|
574 |
+
self.pos_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
|
575 |
+
if "p2c" in self.pos_att_type:
|
576 |
+
self.pos_q_proj = nn.Linear(config.hidden_size, self.all_head_size)
|
577 |
+
|
578 |
+
self.dropout = StableDropout(config.attention_probs_dropout_prob)
|
579 |
+
|
580 |
+
def transpose_for_scores(self, x):
|
581 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1)
|
582 |
+
x = x.view(new_x_shape)
|
583 |
+
return x.permute(0, 2, 1, 3)
|
584 |
+
|
585 |
+
def forward(
|
586 |
+
self,
|
587 |
+
hidden_states,
|
588 |
+
attention_mask,
|
589 |
+
output_attentions=False,
|
590 |
+
query_states=None,
|
591 |
+
relative_pos=None,
|
592 |
+
rel_embeddings=None,
|
593 |
+
):
|
594 |
+
"""
|
595 |
+
Call the module
|
596 |
+
|
597 |
+
Args:
|
598 |
+
hidden_states (`torch.FloatTensor`):
|
599 |
+
Input states to the module usually the output from previous layer, it will be the Q,K and V in
|
600 |
+
*Attention(Q,K,V)*
|
601 |
+
|
602 |
+
attention_mask (`torch.BoolTensor`):
|
603 |
+
An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
|
604 |
+
sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
|
605 |
+
th token.
|
606 |
+
|
607 |
+
output_attentions (`bool`, *optional*):
|
608 |
+
Whether return the attention matrix.
|
609 |
+
|
610 |
+
query_states (`torch.FloatTensor`, *optional*):
|
611 |
+
The *Q* state in *Attention(Q,K,V)*.
|
612 |
+
|
613 |
+
relative_pos (`torch.LongTensor`):
|
614 |
+
The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
|
615 |
+
values ranging in [*-max_relative_positions*, *max_relative_positions*].
|
616 |
+
|
617 |
+
rel_embeddings (`torch.FloatTensor`):
|
618 |
+
The embedding of relative distances. It's a tensor of shape [\\(2 \\times
|
619 |
+
\\text{max_relative_positions}\\), *hidden_size*].
|
620 |
+
|
621 |
+
|
622 |
+
"""
|
623 |
+
if query_states is None:
|
624 |
+
qp = self.in_proj(hidden_states) # .split(self.all_head_size, dim=-1)
|
625 |
+
query_layer, key_layer, value_layer = self.transpose_for_scores(qp).chunk(3, dim=-1)
|
626 |
+
else:
|
627 |
+
|
628 |
+
def linear(w, b, x):
|
629 |
+
if b is not None:
|
630 |
+
return torch.matmul(x, w.t()) + b.t()
|
631 |
+
else:
|
632 |
+
return torch.matmul(x, w.t()) # + b.t()
|
633 |
+
|
634 |
+
ws = self.in_proj.weight.chunk(self.num_attention_heads * 3, dim=0)
|
635 |
+
qkvw = [torch.cat([ws[i * 3 + k] for i in range(self.num_attention_heads)], dim=0) for k in range(3)]
|
636 |
+
qkvb = [None] * 3
|
637 |
+
|
638 |
+
q = linear(qkvw[0], qkvb[0], query_states.to(dtype=qkvw[0].dtype))
|
639 |
+
k, v = [linear(qkvw[i], qkvb[i], hidden_states.to(dtype=qkvw[i].dtype)) for i in range(1, 3)]
|
640 |
+
query_layer, key_layer, value_layer = [self.transpose_for_scores(x) for x in [q, k, v]]
|
641 |
+
|
642 |
+
query_layer = query_layer + self.transpose_for_scores(self.q_bias[None, None, :])
|
643 |
+
value_layer = value_layer + self.transpose_for_scores(self.v_bias[None, None, :])
|
644 |
+
|
645 |
+
rel_att = None
|
646 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
647 |
+
scale_factor = 1 + len(self.pos_att_type)
|
648 |
+
scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor)
|
649 |
+
query_layer = query_layer / scale.to(dtype=query_layer.dtype)
|
650 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
651 |
+
if self.relative_attention:
|
652 |
+
rel_embeddings = self.pos_dropout(rel_embeddings)
|
653 |
+
rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor)
|
654 |
+
|
655 |
+
if rel_att is not None:
|
656 |
+
attention_scores = attention_scores + rel_att
|
657 |
+
|
658 |
+
# bxhxlxd
|
659 |
+
if self.talking_head:
|
660 |
+
attention_scores = self.head_logits_proj(attention_scores.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
661 |
+
|
662 |
+
attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
|
663 |
+
attention_probs = self.dropout(attention_probs)
|
664 |
+
if self.talking_head:
|
665 |
+
attention_probs = self.head_weights_proj(attention_probs.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
666 |
+
|
667 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
668 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
669 |
+
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
|
670 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
671 |
+
if output_attentions:
|
672 |
+
return (context_layer, attention_probs)
|
673 |
+
else:
|
674 |
+
return context_layer
|
675 |
+
|
676 |
+
def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
|
677 |
+
if relative_pos is None:
|
678 |
+
q = query_layer.size(-2)
|
679 |
+
relative_pos = build_relative_position(q, key_layer.size(-2), query_layer.device)
|
680 |
+
if relative_pos.dim() == 2:
|
681 |
+
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
|
682 |
+
elif relative_pos.dim() == 3:
|
683 |
+
relative_pos = relative_pos.unsqueeze(1)
|
684 |
+
# bxhxqxk
|
685 |
+
elif relative_pos.dim() != 4:
|
686 |
+
raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
|
687 |
+
|
688 |
+
att_span = min(max(query_layer.size(-2), key_layer.size(-2)), self.max_relative_positions)
|
689 |
+
relative_pos = relative_pos.long().to(query_layer.device)
|
690 |
+
rel_embeddings = rel_embeddings[
|
691 |
+
self.max_relative_positions - att_span : self.max_relative_positions + att_span, :
|
692 |
+
].unsqueeze(0)
|
693 |
+
|
694 |
+
score = 0
|
695 |
+
|
696 |
+
# content->position
|
697 |
+
if "c2p" in self.pos_att_type:
|
698 |
+
pos_key_layer = self.pos_proj(rel_embeddings)
|
699 |
+
pos_key_layer = self.transpose_for_scores(pos_key_layer)
|
700 |
+
c2p_att = torch.matmul(query_layer, pos_key_layer.transpose(-1, -2))
|
701 |
+
c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
|
702 |
+
c2p_att = torch.gather(c2p_att, dim=-1, index=c2p_dynamic_expand(c2p_pos, query_layer, relative_pos))
|
703 |
+
score += c2p_att
|
704 |
+
|
705 |
+
# position->content
|
706 |
+
if "p2c" in self.pos_att_type:
|
707 |
+
pos_query_layer = self.pos_q_proj(rel_embeddings)
|
708 |
+
pos_query_layer = self.transpose_for_scores(pos_query_layer)
|
709 |
+
pos_query_layer /= torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor)
|
710 |
+
if query_layer.size(-2) != key_layer.size(-2):
|
711 |
+
r_pos = build_relative_position(key_layer.size(-2), key_layer.size(-2), query_layer.device)
|
712 |
+
else:
|
713 |
+
r_pos = relative_pos
|
714 |
+
p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
|
715 |
+
p2c_att = torch.matmul(key_layer, pos_query_layer.transpose(-1, -2).to(dtype=key_layer.dtype))
|
716 |
+
p2c_att = torch.gather(
|
717 |
+
p2c_att, dim=-1, index=p2c_dynamic_expand(p2c_pos, query_layer, key_layer)
|
718 |
+
).transpose(-1, -2)
|
719 |
+
|
720 |
+
if query_layer.size(-2) != key_layer.size(-2):
|
721 |
+
pos_index = relative_pos[:, :, :, 0].unsqueeze(-1)
|
722 |
+
p2c_att = torch.gather(p2c_att, dim=-2, index=pos_dynamic_expand(pos_index, p2c_att, key_layer))
|
723 |
+
score += p2c_att
|
724 |
+
|
725 |
+
return score
|
726 |
+
|
727 |
+
|
728 |
+
class DebertaEmbeddings(nn.Module):
|
729 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
730 |
+
|
731 |
+
def __init__(self, config):
|
732 |
+
super().__init__()
|
733 |
+
pad_token_id = getattr(config, "pad_token_id", 0)
|
734 |
+
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
|
735 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)
|
736 |
+
|
737 |
+
self.position_biased_input = getattr(config, "position_biased_input", True)
|
738 |
+
if not self.position_biased_input:
|
739 |
+
self.position_embeddings = None
|
740 |
+
else:
|
741 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)
|
742 |
+
|
743 |
+
if config.type_vocab_size > 0:
|
744 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
|
745 |
+
|
746 |
+
if self.embedding_size != config.hidden_size:
|
747 |
+
self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
|
748 |
+
self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
|
749 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
750 |
+
self.config = config
|
751 |
+
|
752 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
753 |
+
self.register_buffer(
|
754 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
755 |
+
)
|
756 |
+
|
757 |
+
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None):
|
758 |
+
if input_ids is not None:
|
759 |
+
input_shape = input_ids.size()
|
760 |
+
else:
|
761 |
+
input_shape = inputs_embeds.size()[:-1]
|
762 |
+
|
763 |
+
seq_length = input_shape[1]
|
764 |
+
|
765 |
+
if position_ids is None:
|
766 |
+
position_ids = self.position_ids[:, :seq_length]
|
767 |
+
|
768 |
+
if token_type_ids is None:
|
769 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
770 |
+
|
771 |
+
if inputs_embeds is None:
|
772 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
773 |
+
|
774 |
+
if self.position_embeddings is not None:
|
775 |
+
position_embeddings = self.position_embeddings(position_ids.long())
|
776 |
+
else:
|
777 |
+
position_embeddings = torch.zeros_like(inputs_embeds)
|
778 |
+
|
779 |
+
embeddings = inputs_embeds
|
780 |
+
if self.position_biased_input:
|
781 |
+
embeddings += position_embeddings
|
782 |
+
if self.config.type_vocab_size > 0:
|
783 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
784 |
+
embeddings += token_type_embeddings
|
785 |
+
|
786 |
+
if self.embedding_size != self.config.hidden_size:
|
787 |
+
embeddings = self.embed_proj(embeddings)
|
788 |
+
|
789 |
+
embeddings = self.LayerNorm(embeddings)
|
790 |
+
|
791 |
+
if mask is not None:
|
792 |
+
if mask.dim() != embeddings.dim():
|
793 |
+
if mask.dim() == 4:
|
794 |
+
mask = mask.squeeze(1).squeeze(1)
|
795 |
+
mask = mask.unsqueeze(2)
|
796 |
+
mask = mask.to(embeddings.dtype)
|
797 |
+
|
798 |
+
embeddings = embeddings * mask
|
799 |
+
|
800 |
+
embeddings = self.dropout(embeddings)
|
801 |
+
return embeddings
|
802 |
+
|
803 |
+
|
804 |
+
class DebertaPreTrainedModel(PreTrainedModel):
|
805 |
+
"""
|
806 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
807 |
+
models.
|
808 |
+
"""
|
809 |
+
|
810 |
+
config_class = DebertaConfiguration
|
811 |
+
base_model_prefix = "deberta"
|
812 |
+
_keys_to_ignore_on_load_unexpected = ["position_embeddings"]
|
813 |
+
supports_gradient_checkpointing = True
|
814 |
+
|
815 |
+
def _init_weights(self, module):
|
816 |
+
"""Initialize the weights."""
|
817 |
+
if isinstance(module, nn.Linear):
|
818 |
+
if module.weight.requires_grad==False: # a hack for skipping the nb params
|
819 |
+
return
|
820 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
821 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
822 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
823 |
+
if module.bias is not None:
|
824 |
+
module.bias.data.zero_()
|
825 |
+
elif isinstance(module, nn.Embedding):
|
826 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
827 |
+
if module.padding_idx is not None:
|
828 |
+
module.weight.data[module.padding_idx].zero_()
|
829 |
+
|
830 |
+
|
831 |
+
DEBERTA_START_DOCSTRING = r"""
|
832 |
+
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled
|
833 |
+
Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build
|
834 |
+
on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
|
835 |
+
improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
|
836 |
+
|
837 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
838 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
839 |
+
and behavior.
|
840 |
+
|
841 |
+
|
842 |
+
Parameters:
|
843 |
+
config ([`DebertaConfig`]): Model configuration class with all the parameters of the model.
|
844 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
845 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
846 |
+
"""
|
847 |
+
|
848 |
+
DEBERTA_INPUTS_DOCSTRING = r"""
|
849 |
+
Args:
|
850 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
851 |
+
Indices of input sequence tokens in the vocabulary.
|
852 |
+
|
853 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
854 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
855 |
+
|
856 |
+
[What are input IDs?](../glossary#input-ids)
|
857 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
858 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
859 |
+
|
860 |
+
- 1 for tokens that are **not masked**,
|
861 |
+
- 0 for tokens that are **masked**.
|
862 |
+
|
863 |
+
[What are attention masks?](../glossary#attention-mask)
|
864 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
865 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
866 |
+
1]`:
|
867 |
+
|
868 |
+
- 0 corresponds to a *sentence A* token,
|
869 |
+
- 1 corresponds to a *sentence B* token.
|
870 |
+
|
871 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
872 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
873 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
874 |
+
config.max_position_embeddings - 1]`.
|
875 |
+
|
876 |
+
[What are position IDs?](../glossary#position-ids)
|
877 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
878 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
879 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
880 |
+
model's internal embedding lookup matrix.
|
881 |
+
output_attentions (`bool`, *optional*):
|
882 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
883 |
+
tensors for more detail.
|
884 |
+
output_hidden_states (`bool`, *optional*):
|
885 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
886 |
+
more detail.
|
887 |
+
return_dict (`bool`, *optional*):
|
888 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
889 |
+
"""
|
890 |
+
|
891 |
+
|
892 |
+
@add_start_docstrings(
|
893 |
+
"The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
|
894 |
+
DEBERTA_START_DOCSTRING,
|
895 |
+
)
|
896 |
+
class DebertaModel(DebertaPreTrainedModel):
|
897 |
+
config_class = DebertaConfiguration
|
898 |
+
def __init__(self, config):
|
899 |
+
super().__init__(config)
|
900 |
+
|
901 |
+
self.embeddings = DebertaEmbeddings(config)
|
902 |
+
self.encoder = DebertaEncoder(config)
|
903 |
+
self.z_steps = 0
|
904 |
+
self.config = config
|
905 |
+
# Initialize weights and apply final processing
|
906 |
+
self.post_init()
|
907 |
+
|
908 |
+
def get_input_embeddings(self):
|
909 |
+
return self.embeddings.word_embeddings
|
910 |
+
|
911 |
+
def set_input_embeddings(self, new_embeddings):
|
912 |
+
self.embeddings.word_embeddings = new_embeddings
|
913 |
+
|
914 |
+
def _prune_heads(self, heads_to_prune):
|
915 |
+
"""
|
916 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
917 |
+
class PreTrainedModel
|
918 |
+
"""
|
919 |
+
raise NotImplementedError("The prune function is not implemented in DeBERTa model.")
|
920 |
+
|
921 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
922 |
+
@add_code_sample_docstrings(
|
923 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
924 |
+
output_type=BaseModelOutput,
|
925 |
+
config_class=_CONFIG_FOR_DOC,
|
926 |
+
)
|
927 |
+
def forward(
|
928 |
+
self,
|
929 |
+
input_ids: Optional[torch.Tensor] = None,
|
930 |
+
attention_mask: Optional[torch.Tensor] = None,
|
931 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
932 |
+
position_ids: Optional[torch.Tensor] = None,
|
933 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
934 |
+
output_attentions: Optional[bool] = None,
|
935 |
+
output_hidden_states: Optional[bool] = None,
|
936 |
+
return_dict: Optional[bool] = None,
|
937 |
+
) -> Union[Tuple, BaseModelOutput]:
|
938 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
939 |
+
output_hidden_states = (
|
940 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
941 |
+
)
|
942 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
943 |
+
|
944 |
+
if input_ids is not None and inputs_embeds is not None:
|
945 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
946 |
+
elif input_ids is not None:
|
947 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
948 |
+
input_shape = input_ids.size()
|
949 |
+
elif inputs_embeds is not None:
|
950 |
+
input_shape = inputs_embeds.size()[:-1]
|
951 |
+
else:
|
952 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
953 |
+
|
954 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
955 |
+
|
956 |
+
if attention_mask is None:
|
957 |
+
attention_mask = torch.ones(input_shape, device=device)
|
958 |
+
if token_type_ids is None:
|
959 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
960 |
+
|
961 |
+
embedding_output = self.embeddings(
|
962 |
+
input_ids=input_ids,
|
963 |
+
token_type_ids=token_type_ids,
|
964 |
+
position_ids=position_ids,
|
965 |
+
mask=attention_mask,
|
966 |
+
inputs_embeds=inputs_embeds,
|
967 |
+
)
|
968 |
+
|
969 |
+
encoder_outputs = self.encoder(
|
970 |
+
embedding_output,
|
971 |
+
attention_mask,
|
972 |
+
output_hidden_states=True,
|
973 |
+
output_attentions=output_attentions,
|
974 |
+
return_dict=return_dict,
|
975 |
+
)
|
976 |
+
encoded_layers = encoder_outputs[1]
|
977 |
+
|
978 |
+
if self.z_steps > 1:
|
979 |
+
hidden_states = encoded_layers[-2]
|
980 |
+
layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
|
981 |
+
query_states = encoded_layers[-1]
|
982 |
+
rel_embeddings = self.encoder.get_rel_embedding()
|
983 |
+
attention_mask = self.encoder.get_attention_mask(attention_mask)
|
984 |
+
rel_pos = self.encoder.get_rel_pos(embedding_output)
|
985 |
+
for layer in layers[1:]:
|
986 |
+
query_states = layer(
|
987 |
+
hidden_states,
|
988 |
+
attention_mask,
|
989 |
+
output_attentions=False,
|
990 |
+
query_states=query_states,
|
991 |
+
relative_pos=rel_pos,
|
992 |
+
rel_embeddings=rel_embeddings,
|
993 |
+
)
|
994 |
+
encoded_layers.append(query_states)
|
995 |
+
|
996 |
+
sequence_output = encoded_layers[-1]
|
997 |
+
|
998 |
+
if not return_dict:
|
999 |
+
return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]
|
1000 |
+
|
1001 |
+
return BaseModelOutput(
|
1002 |
+
last_hidden_state=sequence_output,
|
1003 |
+
hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
|
1004 |
+
attentions=encoder_outputs.attentions,
|
1005 |
+
)
|
1006 |
+
|
1007 |
+
|
1008 |
+
@add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING)
|
1009 |
+
class DebertaForMaskedLM(DebertaPreTrainedModel):
|
1010 |
+
config_class = DebertaConfiguration
|
1011 |
+
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
|
1012 |
+
|
1013 |
+
def __init__(self, config):
|
1014 |
+
super().__init__(config)
|
1015 |
+
|
1016 |
+
self.deberta = DebertaModel(config)
|
1017 |
+
self.cls = DebertaOnlyMLMHead(config)
|
1018 |
+
|
1019 |
+
self.post_cls = DebertaFinalMLMHead(config)
|
1020 |
+
# Initialize weights and apply final processing
|
1021 |
+
self.post_init()
|
1022 |
+
self.num_concepts = config.num_concepts
|
1023 |
+
#self.nb = DebertaNB(config)
|
1024 |
+
|
1025 |
+
def get_output_embeddings(self):
|
1026 |
+
return self.cls.predictions.decoder
|
1027 |
+
|
1028 |
+
def set_output_embeddings(self, new_embeddings):
|
1029 |
+
self.cls.predictions.decoder = new_embeddings
|
1030 |
+
self.cls.predictions.bias = new_embeddings.bias
|
1031 |
+
|
1032 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1033 |
+
@add_code_sample_docstrings(
|
1034 |
+
checkpoint=_CHECKPOINT_FOR_MASKED_LM,
|
1035 |
+
output_type=MaskedLMOutput,
|
1036 |
+
config_class=_CONFIG_FOR_DOC,
|
1037 |
+
mask="[MASK]",
|
1038 |
+
expected_output=_MASKED_LM_EXPECTED_OUTPUT,
|
1039 |
+
expected_loss=_MASKED_LM_EXPECTED_LOSS,
|
1040 |
+
)
|
1041 |
+
def forward(
|
1042 |
+
self,
|
1043 |
+
input_ids: Optional[torch.Tensor] = None,
|
1044 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1045 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1046 |
+
position_ids: Optional[torch.Tensor] = None,
|
1047 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1048 |
+
labels: Optional[torch.Tensor] = None,
|
1049 |
+
output_attentions: Optional[bool] = None,
|
1050 |
+
output_hidden_states: Optional[bool] = None,
|
1051 |
+
return_dict: Optional[bool] = None,
|
1052 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
1053 |
+
r"""
|
1054 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1055 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1056 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1057 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1058 |
+
"""
|
1059 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1060 |
+
|
1061 |
+
outputs = self.deberta(
|
1062 |
+
input_ids,
|
1063 |
+
attention_mask=attention_mask,
|
1064 |
+
token_type_ids=token_type_ids,
|
1065 |
+
position_ids=position_ids,
|
1066 |
+
inputs_embeds=inputs_embeds,
|
1067 |
+
output_attentions=output_attentions,
|
1068 |
+
output_hidden_states=output_hidden_states,
|
1069 |
+
return_dict=return_dict,
|
1070 |
+
)
|
1071 |
+
|
1072 |
+
|
1073 |
+
sequence_output = outputs[0]
|
1074 |
+
prediction_scores = self.cls(sequence_output)
|
1075 |
+
#prediction_scores = self.nb(prediction_scores)
|
1076 |
+
prediction_scores = self.post_cls(prediction_scores)
|
1077 |
+
|
1078 |
+
masked_lm_loss = None
|
1079 |
+
if labels is not None:
|
1080 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1081 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size - self.num_concepts), labels.view(-1))
|
1082 |
+
|
1083 |
+
if not return_dict:
|
1084 |
+
output = (prediction_scores,) + outputs[1:]
|
1085 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1086 |
+
|
1087 |
+
return MaskedLMOutput(
|
1088 |
+
loss=masked_lm_loss,
|
1089 |
+
logits=prediction_scores,
|
1090 |
+
hidden_states=outputs.hidden_states,
|
1091 |
+
attentions=outputs.attentions,
|
1092 |
+
)
|
1093 |
+
|
1094 |
+
class DebertaFinalMLMHead(nn.Module):
|
1095 |
+
|
1096 |
+
def __init__(self, config):
|
1097 |
+
super().__init__()
|
1098 |
+
self.num_concepts = config.num_concepts
|
1099 |
+
self.head = torch.nn.Linear(self.num_concepts, config.vocab_size - self.num_concepts)
|
1100 |
+
|
1101 |
+
def forward(self, pre_logits):
|
1102 |
+
concept_scores = pre_logits[:,:,-self.num_concepts:]
|
1103 |
+
return self.head(concept_scores)
|
1104 |
+
|
1105 |
+
class DebertaNB(nn.Module):
|
1106 |
+
def __init__(self, config):
|
1107 |
+
super().__init__()
|
1108 |
+
self.top_k = config.top_k
|
1109 |
+
self.prob_threshold = config.prob_threshold
|
1110 |
+
print(self.top_k, self.prob_threshold)
|
1111 |
+
nb = pickle.load(open(f'{os.path.dirname(os.path.abspath(__file__))}/nb_final_multinomial_{self.top_k}_{self.prob_threshold}.pickle', 'rb'))
|
1112 |
+
#nb = pickle.load(open(f'nb_final_multinomial_{self.top_k}_1.0.pickle', 'rb'))
|
1113 |
+
self.effective_vocab, self.num_concepts = nb.feature_count_.shape
|
1114 |
+
#self.nb = torch.nn.Linear(self.num_concepts, self.effective_vocab)
|
1115 |
+
with torch.no_grad():
|
1116 |
+
class_log_prior = torch.from_numpy(nb.class_log_prior_).float()
|
1117 |
+
#smallest_non_inf_prior = torch.min(class_log_prior[class_log_prior!=-torch.inf])
|
1118 |
+
class_log_prior[class_log_prior==-torch.inf] = -1000 #5 * smallest_non_inf_prior
|
1119 |
+
|
1120 |
+
self.nb_features_log_prob = torch.from_numpy(nb.feature_log_prob_.T).float()
|
1121 |
+
self.nb_class_log_prior = class_log_prior
|
1122 |
+
|
1123 |
+
#self.nb.bias.copy_(class_log_prior)
|
1124 |
+
#self.nb.weight.copy_(torch.from_numpy(nb.feature_log_prob_))
|
1125 |
+
#for param in self.nb.parameters():
|
1126 |
+
# param.requires_grad = False
|
1127 |
+
|
1128 |
+
def forward(self, prediction_scores):
|
1129 |
+
#print(self.nb_class_log_prior.max(), self.nb_class_log_prior.min())
|
1130 |
+
#print(self.nb.bias.max(), self.nb.bias.min())
|
1131 |
+
#import sys
|
1132 |
+
#sys.exit(2)
|
1133 |
+
num_sequences, num_tokens, _ = prediction_scores.shape
|
1134 |
+
concept_scores = prediction_scores[:,:,self.effective_vocab:]
|
1135 |
+
batch_size, token_num, _ = concept_scores.shape
|
1136 |
+
concept_probs = torch.nn.functional.softmax(concept_scores, dim=-1).view(-1, self.num_concepts)
|
1137 |
+
probs, relevant_features = torch.topk(concept_probs, self.top_k, dim=-1)
|
1138 |
+
|
1139 |
+
thresholds = torch.tensor([[self.prob_threshold] for _ in range(batch_size * token_num)])
|
1140 |
+
limits = torch.searchsorted(torch.cumsum(probs, dim=-1),
|
1141 |
+
torch.tensor([[self.prob_threshold] for _ in range(batch_size*token_num)], device=probs.device))
|
1142 |
+
|
1143 |
+
filtered_relevant_features = []
|
1144 |
+
for feats, lims in zip(relevant_features, limits):
|
1145 |
+
limit = min(self.top_k, lims[0].item())
|
1146 |
+
filtered_relevant_features.append(torch.nn.functional.pad(feats[0:limit], pad=[0, self.top_k - limit], value=feats[0]))
|
1147 |
+
relevant_features = torch.vstack(filtered_relevant_features).view(batch_size, token_num, -1)
|
1148 |
+
device = concept_scores.device
|
1149 |
+
|
1150 |
+
features = torch.zeros((num_sequences, num_tokens, self.num_concepts), device=device, dtype=self.nb_features_log_prob.dtype)
|
1151 |
+
features.scatter_(dim=2, index=relevant_features, src=torch.ones_like(relevant_features, device=features.device, dtype=features.dtype))
|
1152 |
+
|
1153 |
+
#modified_prediction_scores = self.nb(features)
|
1154 |
+
modified_prediction_scores = features @ self.nb_features_log_prob.to(features.device) + self.nb_class_log_prior.to(features.device)
|
1155 |
+
#print(modified_prediction_scores.shape, modified_prediction_scores[0], "\n\n==============\n\n", modified_prediction_scores2.shape, modified_prediction_scores2[0], "\n\n~~~~~~~~~~~~~~~~~~~~~~")
|
1156 |
+
#import sys
|
1157 |
+
#sys.exit(2)
|
1158 |
+
return modified_prediction_scores
|
1159 |
+
|
1160 |
+
class DebertaPredictionHeadTransform(nn.Module):
|
1161 |
+
def __init__(self, config):
|
1162 |
+
super().__init__()
|
1163 |
+
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
|
1164 |
+
|
1165 |
+
self.dense = nn.Linear(config.hidden_size, self.embedding_size)
|
1166 |
+
if isinstance(config.hidden_act, str):
|
1167 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
1168 |
+
else:
|
1169 |
+
self.transform_act_fn = config.hidden_act
|
1170 |
+
self.LayerNorm = nn.LayerNorm(self.embedding_size, eps=config.layer_norm_eps)
|
1171 |
+
|
1172 |
+
def forward(self, hidden_states):
|
1173 |
+
hidden_states = self.dense(hidden_states)
|
1174 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
1175 |
+
hidden_states = self.LayerNorm(hidden_states)
|
1176 |
+
return hidden_states
|
1177 |
+
|
1178 |
+
|
1179 |
+
class DebertaLMPredictionHead(nn.Module):
|
1180 |
+
def __init__(self, config):
|
1181 |
+
super().__init__()
|
1182 |
+
self.transform = DebertaPredictionHeadTransform(config)
|
1183 |
+
|
1184 |
+
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
|
1185 |
+
# The output weights are the same as the input embeddings, but there is
|
1186 |
+
# an output-only bias for each token.
|
1187 |
+
self.decoder = nn.Linear(self.embedding_size, config.vocab_size, bias=False)
|
1188 |
+
|
1189 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
1190 |
+
|
1191 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
1192 |
+
self.decoder.bias = self.bias
|
1193 |
+
|
1194 |
+
def _tie_weights(self):
|
1195 |
+
self.decoder.bias = self.bias
|
1196 |
+
|
1197 |
+
def forward(self, hidden_states):
|
1198 |
+
hidden_states = self.transform(hidden_states)
|
1199 |
+
hidden_states = self.decoder(hidden_states)
|
1200 |
+
return hidden_states
|
1201 |
+
|
1202 |
+
# copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
|
1203 |
+
class DebertaOnlyMLMHead(nn.Module):
|
1204 |
+
def __init__(self, config):
|
1205 |
+
super().__init__()
|
1206 |
+
self.predictions = DebertaLMPredictionHead(config)
|
1207 |
+
|
1208 |
+
def forward(self, sequence_output):
|
1209 |
+
prediction_scores = self.predictions(sequence_output)
|
1210 |
+
return prediction_scores
|
1211 |
+
|
1212 |
+
|
1213 |
+
@add_start_docstrings(
|
1214 |
+
"""
|
1215 |
+
DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1216 |
+
pooled output) e.g. for GLUE tasks.
|
1217 |
+
""",
|
1218 |
+
DEBERTA_START_DOCSTRING,
|
1219 |
+
)
|
1220 |
+
class DebertaForSequenceClassification(DebertaPreTrainedModel):
|
1221 |
+
def __init__(self, config):
|
1222 |
+
super().__init__(config)
|
1223 |
+
|
1224 |
+
num_labels = getattr(config, "num_labels", 2)
|
1225 |
+
self.num_labels = num_labels
|
1226 |
+
|
1227 |
+
self.deberta = DebertaModel(config)
|
1228 |
+
self.pooler = ContextPooler(config)
|
1229 |
+
output_dim = self.pooler.output_dim
|
1230 |
+
|
1231 |
+
self.classifier = nn.Linear(output_dim, num_labels)
|
1232 |
+
drop_out = getattr(config, "cls_dropout", None)
|
1233 |
+
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
1234 |
+
self.dropout = StableDropout(drop_out)
|
1235 |
+
|
1236 |
+
# Initialize weights and apply final processing
|
1237 |
+
self.post_init()
|
1238 |
+
|
1239 |
+
def get_input_embeddings(self):
|
1240 |
+
return self.deberta.get_input_embeddings()
|
1241 |
+
|
1242 |
+
def set_input_embeddings(self, new_embeddings):
|
1243 |
+
self.deberta.set_input_embeddings(new_embeddings)
|
1244 |
+
|
1245 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1246 |
+
@add_code_sample_docstrings(
|
1247 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1248 |
+
output_type=SequenceClassifierOutput,
|
1249 |
+
config_class=_CONFIG_FOR_DOC,
|
1250 |
+
)
|
1251 |
+
def forward(
|
1252 |
+
self,
|
1253 |
+
input_ids: Optional[torch.Tensor] = None,
|
1254 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1255 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1256 |
+
position_ids: Optional[torch.Tensor] = None,
|
1257 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1258 |
+
labels: Optional[torch.Tensor] = None,
|
1259 |
+
output_attentions: Optional[bool] = None,
|
1260 |
+
output_hidden_states: Optional[bool] = None,
|
1261 |
+
return_dict: Optional[bool] = None,
|
1262 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
1263 |
+
r"""
|
1264 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1265 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1266 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1267 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1268 |
+
"""
|
1269 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1270 |
+
|
1271 |
+
outputs = self.deberta(
|
1272 |
+
input_ids,
|
1273 |
+
token_type_ids=token_type_ids,
|
1274 |
+
attention_mask=attention_mask,
|
1275 |
+
position_ids=position_ids,
|
1276 |
+
inputs_embeds=inputs_embeds,
|
1277 |
+
output_attentions=output_attentions,
|
1278 |
+
output_hidden_states=output_hidden_states,
|
1279 |
+
return_dict=return_dict,
|
1280 |
+
)
|
1281 |
+
|
1282 |
+
encoder_layer = outputs[0]
|
1283 |
+
pooled_output = self.pooler(encoder_layer)
|
1284 |
+
pooled_output = self.dropout(pooled_output)
|
1285 |
+
logits = self.classifier(pooled_output)
|
1286 |
+
|
1287 |
+
loss = None
|
1288 |
+
if labels is not None:
|
1289 |
+
if self.config.problem_type is None:
|
1290 |
+
if self.num_labels == 1:
|
1291 |
+
# regression task
|
1292 |
+
loss_fn = nn.MSELoss()
|
1293 |
+
logits = logits.view(-1).to(labels.dtype)
|
1294 |
+
loss = loss_fn(logits, labels.view(-1))
|
1295 |
+
elif labels.dim() == 1 or labels.size(-1) == 1:
|
1296 |
+
label_index = (labels >= 0).nonzero()
|
1297 |
+
labels = labels.long()
|
1298 |
+
if label_index.size(0) > 0:
|
1299 |
+
labeled_logits = torch.gather(
|
1300 |
+
logits, 0, label_index.expand(label_index.size(0), logits.size(1))
|
1301 |
+
)
|
1302 |
+
labels = torch.gather(labels, 0, label_index.view(-1))
|
1303 |
+
loss_fct = CrossEntropyLoss()
|
1304 |
+
loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
|
1305 |
+
else:
|
1306 |
+
loss = torch.tensor(0).to(logits)
|
1307 |
+
else:
|
1308 |
+
log_softmax = nn.LogSoftmax(-1)
|
1309 |
+
loss = -((log_softmax(logits) * labels).sum(-1)).mean()
|
1310 |
+
elif self.config.problem_type == "regression":
|
1311 |
+
loss_fct = MSELoss()
|
1312 |
+
if self.num_labels == 1:
|
1313 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1314 |
+
else:
|
1315 |
+
loss = loss_fct(logits, labels)
|
1316 |
+
elif self.config.problem_type == "single_label_classification":
|
1317 |
+
loss_fct = CrossEntropyLoss()
|
1318 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1319 |
+
elif self.config.problem_type == "multi_label_classification":
|
1320 |
+
loss_fct = BCEWithLogitsLoss()
|
1321 |
+
loss = loss_fct(logits, labels)
|
1322 |
+
if not return_dict:
|
1323 |
+
output = (logits,) + outputs[1:]
|
1324 |
+
return ((loss,) + output) if loss is not None else output
|
1325 |
+
|
1326 |
+
return SequenceClassifierOutput(
|
1327 |
+
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
1328 |
+
)
|
1329 |
+
|
1330 |
+
|
1331 |
+
@add_start_docstrings(
|
1332 |
+
"""
|
1333 |
+
DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1334 |
+
Named-Entity-Recognition (NER) tasks.
|
1335 |
+
""",
|
1336 |
+
DEBERTA_START_DOCSTRING,
|
1337 |
+
)
|
1338 |
+
class DebertaForTokenClassification(DebertaPreTrainedModel):
|
1339 |
+
def __init__(self, config):
|
1340 |
+
super().__init__(config)
|
1341 |
+
self.num_labels = config.num_labels
|
1342 |
+
|
1343 |
+
self.deberta = DebertaModel(config)
|
1344 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1345 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1346 |
+
|
1347 |
+
# Initialize weights and apply final processing
|
1348 |
+
self.post_init()
|
1349 |
+
|
1350 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1351 |
+
@add_code_sample_docstrings(
|
1352 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1353 |
+
output_type=TokenClassifierOutput,
|
1354 |
+
config_class=_CONFIG_FOR_DOC,
|
1355 |
+
)
|
1356 |
+
def forward(
|
1357 |
+
self,
|
1358 |
+
input_ids: Optional[torch.Tensor] = None,
|
1359 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1360 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1361 |
+
position_ids: Optional[torch.Tensor] = None,
|
1362 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1363 |
+
labels: Optional[torch.Tensor] = None,
|
1364 |
+
output_attentions: Optional[bool] = None,
|
1365 |
+
output_hidden_states: Optional[bool] = None,
|
1366 |
+
return_dict: Optional[bool] = None,
|
1367 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1368 |
+
r"""
|
1369 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1370 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1371 |
+
"""
|
1372 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1373 |
+
|
1374 |
+
outputs = self.deberta(
|
1375 |
+
input_ids,
|
1376 |
+
attention_mask=attention_mask,
|
1377 |
+
token_type_ids=token_type_ids,
|
1378 |
+
position_ids=position_ids,
|
1379 |
+
inputs_embeds=inputs_embeds,
|
1380 |
+
output_attentions=output_attentions,
|
1381 |
+
output_hidden_states=output_hidden_states,
|
1382 |
+
return_dict=return_dict,
|
1383 |
+
)
|
1384 |
+
|
1385 |
+
sequence_output = outputs[0]
|
1386 |
+
|
1387 |
+
sequence_output = self.dropout(sequence_output)
|
1388 |
+
logits = self.classifier(sequence_output)
|
1389 |
+
|
1390 |
+
loss = None
|
1391 |
+
if labels is not None:
|
1392 |
+
loss_fct = CrossEntropyLoss()
|
1393 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1394 |
+
|
1395 |
+
if not return_dict:
|
1396 |
+
output = (logits,) + outputs[1:]
|
1397 |
+
return ((loss,) + output) if loss is not None else output
|
1398 |
+
|
1399 |
+
return TokenClassifierOutput(
|
1400 |
+
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
1401 |
+
)
|
1402 |
+
|
1403 |
+
|
1404 |
+
@add_start_docstrings(
|
1405 |
+
"""
|
1406 |
+
DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1407 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1408 |
+
""",
|
1409 |
+
DEBERTA_START_DOCSTRING,
|
1410 |
+
)
|
1411 |
+
class DebertaForQuestionAnswering(DebertaPreTrainedModel):
|
1412 |
+
def __init__(self, config):
|
1413 |
+
super().__init__(config)
|
1414 |
+
self.num_labels = config.num_labels
|
1415 |
+
|
1416 |
+
self.deberta = DebertaModel(config)
|
1417 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1418 |
+
|
1419 |
+
# Initialize weights and apply final processing
|
1420 |
+
self.post_init()
|
1421 |
+
|
1422 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1423 |
+
@add_code_sample_docstrings(
|
1424 |
+
checkpoint=_CHECKPOINT_FOR_QA,
|
1425 |
+
output_type=QuestionAnsweringModelOutput,
|
1426 |
+
config_class=_CONFIG_FOR_DOC,
|
1427 |
+
expected_output=_QA_EXPECTED_OUTPUT,
|
1428 |
+
expected_loss=_QA_EXPECTED_LOSS,
|
1429 |
+
qa_target_start_index=_QA_TARGET_START_INDEX,
|
1430 |
+
qa_target_end_index=_QA_TARGET_END_INDEX,
|
1431 |
+
)
|
1432 |
+
def forward(
|
1433 |
+
self,
|
1434 |
+
input_ids: Optional[torch.Tensor] = None,
|
1435 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1436 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1437 |
+
position_ids: Optional[torch.Tensor] = None,
|
1438 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1439 |
+
start_positions: Optional[torch.Tensor] = None,
|
1440 |
+
end_positions: Optional[torch.Tensor] = None,
|
1441 |
+
output_attentions: Optional[bool] = None,
|
1442 |
+
output_hidden_states: Optional[bool] = None,
|
1443 |
+
return_dict: Optional[bool] = None,
|
1444 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1445 |
+
r"""
|
1446 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1447 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1448 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1449 |
+
are not taken into account for computing the loss.
|
1450 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1451 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1452 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1453 |
+
are not taken into account for computing the loss.
|
1454 |
+
"""
|
1455 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1456 |
+
|
1457 |
+
outputs = self.deberta(
|
1458 |
+
input_ids,
|
1459 |
+
attention_mask=attention_mask,
|
1460 |
+
token_type_ids=token_type_ids,
|
1461 |
+
position_ids=position_ids,
|
1462 |
+
inputs_embeds=inputs_embeds,
|
1463 |
+
output_attentions=output_attentions,
|
1464 |
+
output_hidden_states=output_hidden_states,
|
1465 |
+
return_dict=return_dict,
|
1466 |
+
)
|
1467 |
+
|
1468 |
+
sequence_output = outputs[0]
|
1469 |
+
|
1470 |
+
logits = self.qa_outputs(sequence_output)
|
1471 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1472 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1473 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1474 |
+
|
1475 |
+
total_loss = None
|
1476 |
+
if start_positions is not None and end_positions is not None:
|
1477 |
+
# If we are on multi-GPU, split add a dimension
|
1478 |
+
if len(start_positions.size()) > 1:
|
1479 |
+
start_positions = start_positions.squeeze(-1)
|
1480 |
+
if len(end_positions.size()) > 1:
|
1481 |
+
end_positions = end_positions.squeeze(-1)
|
1482 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1483 |
+
ignored_index = start_logits.size(1)
|
1484 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1485 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1486 |
+
|
1487 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1488 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1489 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1490 |
+
total_loss = (start_loss + end_loss) / 2
|
1491 |
+
|
1492 |
+
if not return_dict:
|
1493 |
+
output = (start_logits, end_logits) + outputs[1:]
|
1494 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1495 |
+
|
1496 |
+
return QuestionAnsweringModelOutput(
|
1497 |
+
loss=total_loss,
|
1498 |
+
start_logits=start_logits,
|
1499 |
+
end_logits=end_logits,
|
1500 |
+
hidden_states=outputs.hidden_states,
|
1501 |
+
attentions=outputs.attentions,
|
1502 |
+
)
|
1503 |
+
|