Kikkk commited on
Commit
1357246
·
verified ·
1 Parent(s): 3e6e369

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - ACE05
4
+ - conll2003
5
+ - conll2012_ontonotesv5
6
+ - rams
7
+ - tacred
8
+ - fewrel
9
+ - maven
10
+ language:
11
+ - en
12
+ metrics:
13
+ - f1
14
+ pipeline_tag: text-generation
15
+ tags:
16
+ - text-generation-inference
17
+ - Information Extraction
18
+ - IE
19
+ - Named Entity Recogniton
20
+ - Event Extraction
21
+ - Relation Extraction
22
+ - LLaMA
23
+ ---
24
+
25
+ # Model Card for ADELIE-DPO-1.5B
26
+
27
+ <!-- Provide a quick summary of what the model is/does. -->
28
+
29
+ <p align="justify">
30
+ We introduce <b>ADELIE</b> (<b>A</b>ligning large language mo<b>DEL</b>s on <b>I</b>nformation <b>E</b>xtraction), an aligned LLM that effectively solves various IE tasks, including closed IE, open IE, and on-demand IE. We first collect and construct a high-quality alignment corpus <font face="Verdana">IEInstruct</font> for IE. Then we train ADELIE<sub>SFT</sub> using instruction tuning on <font face="Verdana">IEInstruct</font>. We further train ADELIE<sub>SFT</sub> with direct preference optimization (DPO) objective, resulting in ADELIE<sub>DPO</sub>. Extensive experiments on various held-out IE datasets demonstrate that our models (ADELIE<sub>SFT</sub> and ADELIE<sub>DPO</sub>) achieve state-of-the-art (SoTA) performance among open-source models. We further explore the general capabilities of ADELIE, and experimental results reveal that their general capabilities do not exhibit a noticeable decline.
31
+
32
+ - 📖 Paper: [ADELIE: Aligning Large Language Models on Information Extraction](https://arxiv.org/abs/2405.05008)
33
+ </p>
34
+ - 🐧 Github: [THU/ADELIE](https://github.com/THU-KEG/ADELIE/tree/main)
35
+
36
+
37
+ # Model Performance
38
+
39
+ The table below presents the average F1 scores (%) of the ADELIE model across closed IE, open IE, and on-demand IE tasks, as well as its overall performance (%) on general benchmarks. For dataset details, please refer to the paper.
40
+
41
+ | Model | Closed IE | Open IE | On-demand IE | General Average Score |
42
+ |-----------------|-----------|---------|--------------|-----------------------|
43
+ | Llama2 7B | 5.7 | 5.6 | 22.4 | 52.2 |
44
+ | ADELIE-SFT | 42.6 | 46.9 | 60.4 | 53.5 |
45
+ | ADELIE-DPO | **42.7** | **47.6** | **60.5** | **53.8** |
46
+ |-----------------|-----------|---------|--------------|-----------------------|
47
+ | Llama3.2 3B | 19.1 | 18.5 | 20.8 | 55.5 |
48
+ | ADELIE-SFT-3B | **41.8** | 47.6 | **60.8** | **55.6** |
49
+ | ADELIE-DPO-3B | 39.2 | **47.8** | 60.7 | **55.6** |
50
+ |-----------------|-----------|---------|--------------|-----------------------|
51
+ | Qwen2.5 1.5B | 16.5 | 14.2 | 20.5 | 54.6 |
52
+ | ADELIE-SFT-1.5B | 37.7 | 44.6 | 58.9 | 55.0 |
53
+ | ADELIE-DPO-1.5B | **38.5** | **45.6** | **59.2** | **55.1** |
54
+
55
+
56
+
57
+ ### Model Description
58
+
59
+ <!-- Provide a longer summary of what this model is. -->
60
+
61
+
62
+
63
+ - **Developed by:** Yunjia Qi, Hao Peng, Xiaozhi Wang, Bin Xu, Lei Hou, Juanzi Li
64
+ - **Model type:** Text Generation
65
+ - **Language(s) (NLP):** English
66
+ - **License:** LLaMA2 License for the base model.
67
+ - **Finetuned from model [optional]:** Qwen2.5-1.5B
68
+