File size: 3,226 Bytes
6fb0e66 bcb1ce4 6fb0e66 bcaf94f e1aa3b5 bcaf94f e1aa3b5 bcaf94f e1aa3b5 bcaf94f 6fb0e66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: llama2
datasets:
- ACE05
- conll2003
- conll2012_ontonotesv5
- rams
- tacred
- fewrel
- maven
language:
- en
metrics:
- f1
pipeline_tag: text-generation
tags:
- text-generation-inference
- Information Extraction
- IE
- Named Entity Recogniton
- Event Extraction
- Relation Extraction
- LLaMA
---
# Model Card for ADELIE-SFT
<!-- Provide a quick summary of what the model is/does. -->
<p align="justify">
We introduce <b>ADELIE</b> (<b>A</b>ligning large language mo<b>DEL</b>s on <b>I</b>nformation <b>E</b>xtraction), an aligned LLM that effectively solves various IE tasks, including closed IE, open IE, and on-demand IE. We first collect and construct a high-quality alignment corpus <font face="Verdana">IEInstruct</font> for IE. Then we train ADELIE<sub>SFT</sub> using instruction tuning on <font face="Verdana">IEInstruct</font>. We further train ADELIE<sub>SFT</sub> with direct preference optimization (DPO) objective, resulting in ADELIE<sub>DPO</sub>. Extensive experiments on various held-out IE datasets demonstrate that our models (ADELIE<sub>SFT</sub> and ADELIE<sub>DPO</sub>) achieve state-of-the-art (SoTA) performance among open-source models. We further explore the general capabilities of ADELIE, and experimental results reveal that their general capabilities do not exhibit a noticeable decline.
- 📖 Paper: [ADELIE: Aligning Large Language Models on Information Extraction](https://arxiv.org/abs/2405.05008)
</p>
- 🐧 Github: [THU/ADELIE](https://github.com/THU-KEG/ADELIE/tree/main)
# Model Performance
The table below presents the average F1 scores (%) of the ADELIE model across closed IE, open IE, and on-demand IE tasks, as well as its overall performance (%) on general benchmarks. For dataset details, please refer to the paper.
| Model | Closed IE | Open IE | On-demand IE | General Average Score |
|-----------------|-----------|---------|--------------|-----------------------|
| Llama2 7B | 5.7 | 5.6 | 22.4 | 52.2 |
| ADELIE-SFT | 42.6 | 46.9 | 60.4 | 53.5 |
| ADELIE-DPO | **42.7** | **47.6** | **60.5** | **53.8** |
|-----------------|-----------|---------|--------------|-----------------------|
| Llama3.2 3B | 19.1 | 18.5 | 20.8 | 55.5 |
| ADELIE-SFT-3B | **41.8** | 47.6 | **60.8** | **55.6** |
| ADELIE-DPO-3B | 39.2 | **47.8** | 60.7 | **55.6** |
|-----------------|-----------|---------|--------------|-----------------------|
| Qwen2.5 1.5B | 16.5 | 14.2 | 20.5 | 54.6 |
| ADELIE-SFT-1.5B | 37.7 | 44.6 | 58.9 | 55.0 |
| ADELIE-DPO-1.5B | **38.5** | **45.6** | **59.2** | **55.1** |
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Yunjia Qi, Hao Peng, Xiaozhi Wang, Bin Xu, Lei Hou, Juanzi Li
- **Model type:** Text Generation
- **Language(s) (NLP):** English
- **License:** LLaMA2 License for the base model.
- **Finetuned from model [optional]:** LLaMA2-7B
|