File size: 18,460 Bytes
4e56534 33b90ca c08ffac 4e56534 d2b1ebe 4e56534 0105673 4e56534 0105673 4e56534 0105673 4e56534 0105673 4e56534 a190ef4 8d6ea3f d2b1ebe 4e56534 17ab7f9 0105673 17ab7f9 4e56534 0105673 4e56534 a190ef4 4e56534 a190ef4 4e56534 a190ef4 d2b1ebe a190ef4 17ab7f9 0105673 d2b1ebe 0105673 a190ef4 4e56534 17ab7f9 4e56534 17ab7f9 4e56534 d16a569 4e56534 17ab7f9 4e56534 a190ef4 4e56534 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# CogVideoX-5B
<p style="text-align: center;">
<div align="center">
<img src=https://github.com/THUDM/CogVideo/raw/main/resources/logo.svg width="50%"/>
</div>
<p align="center">
<a href="https://huggingface.co/THUDM/CogVideoX-5b/blob/main/README.md">📄 Read in English</a> |
<a href="https://huggingface.co/spaces/THUDM/CogVideoX-5B-Space">🤗 Huggingface Space</a> |
<a href="https://github.com/THUDM/CogVideo">🌐 Github </a> |
<a href="https://arxiv.org/pdf/2408.06072">📜 arxiv </a>
</p>
<p align="center">
📍 前往<a href="https://chatglm.cn/video?fr=osm_cogvideox"> 清影</a> 和 <a href="https://open.bigmodel.cn/?utm_campaign=open&_channel_track_key=OWTVNma9"> API平台</a> 体验商业版视频生成模型
</p>
## 作品案例
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Video Gallery with Captions</title>
<style>
.video-container {
display: flex;
flex-wrap: wrap;
justify-content: space-around;
}
.video-item {
width: 45%;
margin-bottom: 20px;
transition: transform 0.3s;
}
.video-item:hover {
transform: scale(1.1);
}
.caption {
text-align: center;
margin-top: 10px;
font-size: 11px;
}
</style>
</head>
<body>
<div class="video-container">
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/user-attachments/assets/cf5953ea-96d3-48fd-9907-c4708752c714" type="video/mp4">
</video>
<div class="caption">A garden comes to life as a kaleidoscope of butterflies flutters amidst the blossoms, their delicate wings casting shadows on the petals below. In the background, a grand fountain cascades water with a gentle splendor, its rhythmic sound providing a soothing backdrop. Beneath the cool shade of a mature tree, a solitary wooden chair invites solitude and reflection, its smooth surface worn by the touch of countless visitors seeking a moment of tranquility in nature's embrace.</div>
</div>
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/user-attachments/assets/fe0a78e6-b669-4800-8cf0-b5f9b5145b52" type="video/mp4">
</video>
<div class="caption">A small boy, head bowed and determination etched on his face, sprints through the torrential downpour as lightning crackles and thunder rumbles in the distance. The relentless rain pounds the ground, creating a chaotic dance of water droplets that mirror the dramatic sky's anger. In the far background, the silhouette of a cozy home beckons, a faint beacon of safety and warmth amidst the fierce weather. The scene is one of perseverance and the unyielding spirit of a child braving the elements.</div>
</div>
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/user-attachments/assets/c182f606-8f8c-421d-b414-8487070fcfcb" type="video/mp4">
</video>
<div class="caption">A suited astronaut, with the red dust of Mars clinging to their boots, reaches out to shake hands with an alien being, their skin a shimmering blue, under the pink-tinged sky of the fourth planet. In the background, a sleek silver rocket, a beacon of human ingenuity, stands tall, its engines powered down, as the two representatives of different worlds exchange a historic greeting amidst the desolate beauty of the Martian landscape.</div>
</div>
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/user-attachments/assets/7db2bbce-194d-434d-a605-350254b6c298" type="video/mp4">
</video>
<div class="caption">An elderly gentleman, with a serene expression, sits at the water's edge, a steaming cup of tea by his side. He is engrossed in his artwork, brush in hand, as he renders an oil painting on a canvas that's propped up against a small, weathered table. The sea breeze whispers through his silver hair, gently billowing his loose-fitting white shirt, while the salty air adds an intangible element to his masterpiece in progress. The scene is one of tranquility and inspiration, with the artist's canvas capturing the vibrant hues of the setting sun reflecting off the tranquil sea.</div>
</div>
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/user-attachments/assets/62b01046-8cab-44cc-bd45-4d965bb615ec" type="video/mp4">
</video>
<div class="caption">In a dimly lit bar, purplish light bathes the face of a mature man, his eyes blinking thoughtfully as he ponders in close-up, the background artfully blurred to focus on his introspective expression, the ambiance of the bar a mere suggestion of shadows and soft lighting.</div>
</div>
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/user-attachments/assets/d78e552a-4b3f-4b81-ac3f-3898079554f6" type="video/mp4">
</video>
<div class="caption">A golden retriever, sporting sleek black sunglasses, with its lengthy fur flowing in the breeze, sprints playfully across a rooftop terrace, recently refreshed by a light rain. The scene unfolds from a distance, the dog's energetic bounds growing larger as it approaches the camera, its tail wagging with unrestrained joy, while droplets of water glisten on the concrete behind it. The overcast sky provides a dramatic backdrop, emphasizing the vibrant golden coat of the canine as it dashes towards the viewer.</div>
</div>
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/user-attachments/assets/30894f12-c741-44a2-9e6e-ddcacc231e5b" type="video/mp4">
</video>
<div class="caption">On a brilliant sunny day, the lakeshore is lined with an array of willow trees, their slender branches swaying gently in the soft breeze. The tranquil surface of the lake reflects the clear blue sky, while several elegant swans glide gracefully through the still water, leaving behind delicate ripples that disturb the mirror-like quality of the lake. The scene is one of serene beauty, with the willows' greenery providing a picturesque frame for the peaceful avian visitors.</div>
</div>
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/user-attachments/assets/926575ca-7150-435b-a0ff-4900a963297b" type="video/mp4">
</video>
<div class="caption">A Chinese mother, draped in a soft, pastel-colored robe, gently rocks back and forth in a cozy rocking chair positioned in the tranquil setting of a nursery. The dimly lit bedroom is adorned with whimsical mobiles dangling from the ceiling, casting shadows that dance on the walls. Her baby, swaddled in a delicate, patterned blanket, rests against her chest, the child's earlier cries now replaced by contented coos as the mother's soothing voice lulls the little one to sleep. The scent of lavender fills the air, adding to the serene atmosphere, while a warm, orange glow from a nearby nightlight illuminates the scene with a gentle hue, capturing a moment of tender love and comfort.</div>
</div>
</div>
</body>
</html>
## 模型介绍
CogVideoX是 [清影](https://chatglm.cn/video?fr=osm_cogvideo) 同源的开源版本视频生成模型。下表展示目前我们提供的视频生成模型列表,以及相关基础信息。
<table style="border-collapse: collapse; width: 100%;">
<tr>
<th style="text-align: center;">模型名</th>
<th style="text-align: center;">CogVideoX-2B</th>
<th style="text-align: center;">CogVideoX-5B (本仓库)</th>
</tr>
<tr>
<td style="text-align: center;">模型介绍</td>
<td style="text-align: center;">入门级模型,兼顾兼容性。运行,二次开发成本低。</td>
<td style="text-align: center;">视频生成质量更高,视觉效果更好的更大尺寸模型。</td>
</tr>
<tr>
<td style="text-align: center;">推理精度</td>
<td style="text-align: center;"><b>FP16*(推荐)</b>, BF16, FP32,FP8*,INT8,不支持INT4</td>
<td style="text-align: center;"><b>BF16(推荐)</b>, FP16, FP32,FP8*,INT8,不支持INT4</td>
</tr>
<tr>
<td style="text-align: center;">单GPU显存消耗<br></td>
<td style="text-align: center;"><a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> FP16: 18GB <br><b>diffusers FP16: 4GB起* </b><br><b>diffusers INT8(torchao): 3.6G起*</b></td>
<td style="text-align: center;"><a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> BF16: 26GB <br><b>diffusers BF16 : 5GB起* </b><br><b>diffusers INT8(torchao): 4.4G起* </b></td>
</tr>
<tr>
<td style="text-align: center;">多GPU推理显存消耗</td>
<td style="text-align: center;"><b>FP16: 10GB* using diffusers</b><br></td>
<td style="text-align: center;"><b>BF16: 15GB* using diffusers</b><br></td>
</tr>
<tr>
<td style="text-align: center;">推理速度<br>(Step = 50, FP/BF16)</td>
<td style="text-align: center;">单卡A100: ~90秒<br>单卡H100: ~45秒</td>
<td style="text-align: center;">单卡A100: ~180秒<br>单卡H100: ~90秒</td>
</tr>
<tr>
<td style="text-align: center;">微调精度</td>
<td style="text-align: center;"><b>FP16</b></td>
<td style="text-align: center;"><b>BF16</b></td>
</tr>
<tr>
<td style="text-align: center;">微调显存消耗(每卡)</td>
<td style="text-align: center;">47 GB (bs=1, LORA)<br> 61 GB (bs=2, LORA)<br> 62GB (bs=1, SFT)</td>
<td style="text-align: center;">63 GB (bs=1, LORA)<br> 80 GB (bs=2, LORA)<br> 75GB (bs=1, SFT)<br></td>
</tr>
<tr>
<td style="text-align: center;">提示词语言</td>
<td colspan="2" style="text-align: center;">English*</td>
</tr>
<tr>
<td style="text-align: center;">提示词长度上限</td>
<td colspan="2" style="text-align: center;">226 Tokens</td>
</tr>
<tr>
<td style="text-align: center;">视频长度</td>
<td colspan="2" style="text-align: center;">6 秒</td>
</tr>
<tr>
<td style="text-align: center;">帧率</td>
<td colspan="2" style="text-align: center;">8 帧 / 秒 </td>
</tr>
<tr>
<td style="text-align: center;">视频分辨率</td>
<td colspan="2" style="text-align: center;">720 * 480,不支持其他分辨率(含微调)</td>
</tr>
<tr>
<td style="text-align: center;">位置编码</td>
<td style="text-align: center;">3d_sincos_pos_embed</td>
<td style="text-align: center;">3d_rope_pos_embed<br></td>
</tr>
</table>
**数据解释**
+ 使用 diffusers 库进行测试时,启用了全部`diffusers`库自带的优化,该方案未测试在非**NVIDIA A100 / H100** 外的设备上的实际显存 / 内存占用。通常,该方案可以适配于所有 **NVIDIA 安培架构**
以上的设备。若关闭优化,显存占用会成倍增加,峰值显存约为表格的3倍。但速度提升3-4倍左右。你可以选择性的关闭部分优化,这些优化包括:
```
pipe.enable_model_cpu_offload()
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
```
+ 多GPU推理时,需要关闭 `enable_model_cpu_offload()` 优化。
+ 使用 INT8 模型会导致推理速度降低,此举是为了满足显存较低的显卡能正常推理并保持较少的视频质量损失,推理速度大幅降低。
+ 2B 模型采用 `FP16` 精度训练, 5B模型采用 `BF16` 精度训练。我们推荐使用模型训练的精度进行推理。
+ [PytorchAO](https://github.com/pytorch/ao) 和 [Optimum-quanto](https://github.com/huggingface/optimum-quanto/)
可以用于量化文本编码器、Transformer 和 VAE 模块,以降低 CogVideoX 的内存需求。这使得在免费的 T4 Colab 或更小显存的 GPU
上运行模型成为可能!同样值得注意的是,TorchAO 量化完全兼容 `torch.compile`,这可以显著提高推理速度。在 `NVIDIA H100`
及以上设备上必须使用 `FP8` 精度,这需要源码安装 `torch`、`torchao`、`diffusers` 和 `accelerate` Python
包。建议使用 `CUDA 12.4`。
+ 推理速度测试同样采用了上述显存优化方案,不采用显存优化的情况下,推理速度提升约10%。 只有`diffusers`版本模型支持量化。
+ 模型仅支持英语输入,其他语言可以通过大模型润色时翻译为英语。
**提醒**
+ 使用 [SAT](https://github.com/THUDM/SwissArmyTransformer) 推理和微调SAT版本模型。欢迎前往我们的github查看。
## 快速上手 🤗
本模型已经支持使用 huggingface 的 diffusers 库进行部署,你可以按照以下步骤进行部署。
**我们推荐您进入我们的 [github](https://github.com/THUDM/CogVideo) 并查看相关的提示词优化和转换,以获得更好的体验。**
1. 安装对应的依赖
```shell
# diffusers>=0.30.1
# transformers>=0.44.0
# accelerate>=0.33.0 (suggest install from source)
# imageio-ffmpeg>=0.5.1
pip install --upgrade transformers accelerate diffusers imageio-ffmpeg
```
2. 运行代码 (BF16 / FP16)
```python
import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-5b",
torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()
video = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
## Quantized Inference
[PytorchAO](https://github.com/pytorch/ao) 和 [Optimum-quanto](https://github.com/huggingface/optimum-quanto/)
可以用于对文本编码器、Transformer 和 VAE 模块进行量化,从而降低 CogVideoX 的内存需求。这使得在免费的 T4 Colab 或较小 VRAM 的
GPU 上运行该模型成为可能!值得注意的是,TorchAO 量化与 `torch.compile` 完全兼容,这可以显著加快推理速度。
```diff
# To get started, PytorchAO needs to be installed from the GitHub source and PyTorch Nightly.
# Source and nightly installation is only required until next release.
import torch
from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXPipeline
from diffusers.utils import export_to_video
+ from transformers import T5EncoderModel
+ from torchao.quantization import quantize_, int8_weight_only, int8_dynamic_activation_int8_weight
+ quantization = int8_weight_only
+ text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="text_encoder", torch_dtype=torch.bfloat16)
+ quantize_(text_encoder, quantization())
+ transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16)
+ quantize_(transformer, quantization())
+ vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-5b", subfolder="vae", torch_dtype=torch.bfloat16)
+ quantize_(vae, quantization())
# Create pipeline and run inference
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-5b",
+ text_encoder=text_encoder,
+ transformer=transformer,
+ vae=vae,
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
video = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
此外,这些模型可以通过使用PytorchAO以量化数据类型序列化并存储,从而节省磁盘空间。你可以在以下链接中找到示例和基准测试。
- [torchao](https://gist.github.com/a-r-r-o-w/4d9732d17412888c885480c6521a9897)
- [quanto](https://gist.github.com/a-r-r-o-w/31be62828b00a9292821b85c1017effa)
## 深入研究
欢迎进入我们的 [github](https://github.com/THUDM/CogVideo),你将获得:
1. 更加详细的技术细节介绍和代码解释。
2. 提示词的优化和转换。
3. SAT版本模型进行推理和微调,甚至预发布。
4. 项目更新日志动态,更多互动机会。
5. CogVideoX 工具链,帮助您更好的使用模型。
6. INT8 模型推理代码。
## 模型协议
该模型根据 [CogVideoX LICENSE](LICENSE) 许可证发布。
## 引用
```
@article{yang2024cogvideox,
title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer},
author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others},
journal={arXiv preprint arXiv:2408.06072},
year={2024}
}
``` |