Delete util.py
Browse files
util.py
DELETED
@@ -1,483 +0,0 @@
|
|
1 |
-
from typing import Optional, Tuple, Union
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from einops import rearrange, repeat
|
5 |
-
import torch.nn.functional as F
|
6 |
-
|
7 |
-
import triton
|
8 |
-
import triton.language as tl
|
9 |
-
|
10 |
-
|
11 |
-
# @triton.autotune(
|
12 |
-
# configs=[
|
13 |
-
# triton.Config({"BLOCK_M": 2}),
|
14 |
-
# triton.Config({"BLOCK_M": 4}),
|
15 |
-
# triton.Config({"BLOCK_M": 8}),
|
16 |
-
# triton.Config({"BLOCK_M": 16}),
|
17 |
-
# ],
|
18 |
-
# key=["CACHE_KEY_SEQLEN", "BLOCK_K", "INTERLEAVED"],
|
19 |
-
# )
|
20 |
-
@triton.jit
|
21 |
-
def rotary_kernel(
|
22 |
-
OUT, # Pointers to matrices
|
23 |
-
X,
|
24 |
-
COS,
|
25 |
-
SIN,
|
26 |
-
CU_SEQLENS,
|
27 |
-
SEQLEN_OFFSETS, # this could be int or a pointer
|
28 |
-
# Matrix dimensions
|
29 |
-
seqlen,
|
30 |
-
nheads,
|
31 |
-
rotary_dim,
|
32 |
-
seqlen_ro,
|
33 |
-
CACHE_KEY_SEQLEN,
|
34 |
-
# strides
|
35 |
-
stride_out_batch,
|
36 |
-
stride_out_nheads,
|
37 |
-
stride_out_seqlen,
|
38 |
-
stride_out_headdim,
|
39 |
-
stride_x_batch,
|
40 |
-
stride_x_nheads,
|
41 |
-
stride_x_seqlen,
|
42 |
-
stride_x_headdim,
|
43 |
-
# Meta-parameters
|
44 |
-
BLOCK_K: tl.constexpr,
|
45 |
-
IS_SEQLEN_OFFSETS_TENSOR: tl.constexpr,
|
46 |
-
IS_VARLEN: tl.constexpr,
|
47 |
-
INTERLEAVED: tl.constexpr,
|
48 |
-
CONJUGATE: tl.constexpr,
|
49 |
-
BLOCK_M: tl.constexpr,
|
50 |
-
):
|
51 |
-
pid_m = tl.program_id(axis=0)
|
52 |
-
pid_batch = tl.program_id(axis=1)
|
53 |
-
pid_head = tl.program_id(axis=2)
|
54 |
-
rotary_dim_half = rotary_dim // 2
|
55 |
-
|
56 |
-
if not IS_VARLEN:
|
57 |
-
X = X + pid_batch * stride_x_batch + pid_head * stride_x_nheads
|
58 |
-
OUT = OUT + pid_batch * stride_out_batch + pid_head * stride_out_nheads
|
59 |
-
COS = COS + pid_batch * seqlen_ro * rotary_dim_half
|
60 |
-
SIN = SIN + pid_batch * seqlen_ro * rotary_dim_half
|
61 |
-
else:
|
62 |
-
start_idx = tl.load(CU_SEQLENS + pid_batch)
|
63 |
-
seqlen = tl.load(CU_SEQLENS + pid_batch + 1) - start_idx
|
64 |
-
X = X + start_idx * stride_x_seqlen + pid_head * stride_x_nheads
|
65 |
-
OUT = OUT + start_idx * stride_out_seqlen + pid_head * stride_out_nheads
|
66 |
-
|
67 |
-
if pid_m * BLOCK_M >= seqlen:
|
68 |
-
return
|
69 |
-
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
70 |
-
if not IS_SEQLEN_OFFSETS_TENSOR:
|
71 |
-
rm_cs = rm + SEQLEN_OFFSETS
|
72 |
-
else:
|
73 |
-
rm_cs = rm + tl.load(SEQLEN_OFFSETS + pid_batch)
|
74 |
-
rk = tl.arange(0, BLOCK_K)
|
75 |
-
rk_half = tl.arange(0, BLOCK_K // 2)
|
76 |
-
|
77 |
-
if not INTERLEAVED:
|
78 |
-
# Load the 1st and 2nd halves of X, do calculation, then store to 1st and 2nd halves of OUT
|
79 |
-
X = X + (rm[:, None] * stride_x_seqlen + rk_half[None, :] * stride_x_headdim)
|
80 |
-
COS = COS + (rm_cs[:, None] * rotary_dim_half + rk_half[None, :])
|
81 |
-
SIN = SIN + (rm_cs[:, None] * rotary_dim_half + rk_half[None, :])
|
82 |
-
cos = tl.load(
|
83 |
-
COS, mask=(rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < rotary_dim_half), other=1.0
|
84 |
-
)
|
85 |
-
sin = tl.load(
|
86 |
-
SIN, mask=(rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < rotary_dim_half), other=0.0
|
87 |
-
)
|
88 |
-
x0 = tl.load(
|
89 |
-
X, mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half), other=0.0
|
90 |
-
)
|
91 |
-
x1 = tl.load(
|
92 |
-
X + rotary_dim_half * stride_x_headdim,
|
93 |
-
mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half),
|
94 |
-
other=0.0,
|
95 |
-
)
|
96 |
-
if CONJUGATE:
|
97 |
-
sin = -sin
|
98 |
-
o0 = x0 * cos - x1 * sin
|
99 |
-
o1 = x0 * sin + x1 * cos
|
100 |
-
# write back result
|
101 |
-
OUT = OUT + (rm[:, None] * stride_out_seqlen + rk_half[None, :] * stride_out_headdim)
|
102 |
-
tl.store(OUT, o0, mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half))
|
103 |
-
tl.store(
|
104 |
-
OUT + rotary_dim_half * stride_out_headdim,
|
105 |
-
o1,
|
106 |
-
mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half),
|
107 |
-
)
|
108 |
-
else:
|
109 |
-
# We don't want to load X[0, 2, 4, ...] and X[1, 3, 5, ...] separately since both are slow.
|
110 |
-
# Instead, we load x0 = X[0, 1, 2, 3, ...] and x1 = X[1, 0, 3, 2, ...].
|
111 |
-
# Loading x0 will be fast but x1 will be slow.
|
112 |
-
# Then we load cos = COS[0, 0, 1, 1, ...] and sin = SIN[0, 0, 1, 1, ...].
|
113 |
-
# Then we do the calculation and use tl.where to pick put the right outputs for the even
|
114 |
-
# and for the odd indices.
|
115 |
-
rk_swap = rk + ((rk + 1) % 2) * 2 - 1 # 1, 0, 3, 2, 5, 4, ...
|
116 |
-
rk_repeat = tl.arange(0, BLOCK_K) // 2
|
117 |
-
X0 = X + (rm[:, None] * stride_x_seqlen + rk[None, :] * stride_x_headdim)
|
118 |
-
X1 = X + (rm[:, None] * stride_x_seqlen + rk_swap[None, :] * stride_x_headdim)
|
119 |
-
COS = COS + (rm_cs[:, None] * rotary_dim_half + rk_repeat[None, :])
|
120 |
-
SIN = SIN + (rm_cs[:, None] * rotary_dim_half + rk_repeat[None, :])
|
121 |
-
cos = tl.load(
|
122 |
-
COS,
|
123 |
-
mask=(rm_cs[:, None] < seqlen_ro) & (rk_repeat[None, :] < rotary_dim_half),
|
124 |
-
other=1.0,
|
125 |
-
).to(tl.float32)
|
126 |
-
sin = tl.load(
|
127 |
-
SIN,
|
128 |
-
mask=(rm_cs[:, None] < seqlen_ro) & (rk_repeat[None, :] < rotary_dim_half),
|
129 |
-
other=0.0,
|
130 |
-
).to(tl.float32)
|
131 |
-
x0 = tl.load(X0, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim), other=0.0).to(
|
132 |
-
tl.float32
|
133 |
-
)
|
134 |
-
x1 = tl.load(
|
135 |
-
X1, mask=(rm[:, None] < seqlen) & (rk_swap[None, :] < rotary_dim), other=0.0
|
136 |
-
).to(tl.float32)
|
137 |
-
if CONJUGATE:
|
138 |
-
sin = -sin
|
139 |
-
x0_cos = x0 * cos
|
140 |
-
x1_sin = x1 * sin
|
141 |
-
out = tl.where(rk[None, :] % 2 == 0, x0_cos - x1_sin, x0_cos + x1_sin)
|
142 |
-
OUT = OUT + (rm[:, None] * stride_out_seqlen + rk[None, :] * stride_out_headdim)
|
143 |
-
tl.store(OUT, out, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim))
|
144 |
-
|
145 |
-
|
146 |
-
def apply_rotary(
|
147 |
-
x: torch.Tensor,
|
148 |
-
cos: torch.Tensor,
|
149 |
-
sin: torch.Tensor,
|
150 |
-
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
151 |
-
cu_seqlens: Optional[torch.Tensor] = None,
|
152 |
-
max_seqlen: Optional[int] = None,
|
153 |
-
interleaved=False,
|
154 |
-
inplace=False,
|
155 |
-
conjugate=False,
|
156 |
-
) -> torch.Tensor:
|
157 |
-
"""
|
158 |
-
Arguments:
|
159 |
-
x: (batch, seqlen, nheads, headdim) if cu_seqlens is None
|
160 |
-
else (total_seqlen, nheads, headdim).
|
161 |
-
cos: (seqlen_ro, rotary_dim / 2)
|
162 |
-
sin: (seqlen_ro, rotary_dim / 2)
|
163 |
-
seqlen_offsets: integer or integer tensor of size (batch,)
|
164 |
-
cu_seqlens: (batch + 1,) or None
|
165 |
-
max_seqlen: int
|
166 |
-
Returns:
|
167 |
-
y: (batch, seqlen, nheads, headdim)
|
168 |
-
"""
|
169 |
-
|
170 |
-
batch, nheads, seqlen, headdim = x.shape
|
171 |
-
|
172 |
-
batch_ro, seqlen_ro, rotary_dim = cos.shape
|
173 |
-
|
174 |
-
assert batch == batch_ro
|
175 |
-
assert sin.shape == cos.shape
|
176 |
-
rotary_dim *= 2
|
177 |
-
assert rotary_dim <= headdim, "rotary_dim must be <= headdim"
|
178 |
-
assert headdim <= 256, "Only support headdim <= 256"
|
179 |
-
|
180 |
-
assert seqlen_ro >= seqlen, "seqlen_ro must be >= seqlen"
|
181 |
-
|
182 |
-
assert (
|
183 |
-
cos.dtype == sin.dtype
|
184 |
-
), f"cos and sin must have the same dtype, got {cos.dtype} and {sin.dtype}"
|
185 |
-
assert (
|
186 |
-
x.dtype == cos.dtype
|
187 |
-
), f"Input and cos/sin must have the same dtype, got {x.dtype} and {cos.dtype}"
|
188 |
-
|
189 |
-
cos, sin = cos.contiguous(), sin.contiguous()
|
190 |
-
if isinstance(seqlen_offsets, torch.Tensor):
|
191 |
-
assert seqlen_offsets.shape == (batch,)
|
192 |
-
assert seqlen_offsets.dtype in [torch.int32, torch.int64]
|
193 |
-
seqlen_offsets = seqlen_offsets.contiguous()
|
194 |
-
else:
|
195 |
-
assert seqlen_offsets + seqlen <= seqlen_ro
|
196 |
-
|
197 |
-
output = torch.empty_like(x) if not inplace else x
|
198 |
-
if rotary_dim < headdim and not inplace:
|
199 |
-
output[..., rotary_dim:].copy_(x[..., rotary_dim:])
|
200 |
-
|
201 |
-
BLOCK_K = (
|
202 |
-
32
|
203 |
-
if rotary_dim <= 32
|
204 |
-
else (64 if rotary_dim <= 64 else (128 if rotary_dim <= 128 else 256))
|
205 |
-
)
|
206 |
-
grid = lambda META: (triton.cdiv(seqlen, META["BLOCK_M"]), batch, nheads) # noqa
|
207 |
-
BLOCK_M = 4 if interleaved else (8 if rotary_dim <= 64 else 4)
|
208 |
-
|
209 |
-
# Need this, otherwise Triton tries to launch from cuda:0 and we get
|
210 |
-
# ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?)
|
211 |
-
with torch.cuda.device(x.device.index):
|
212 |
-
rotary_kernel[grid](
|
213 |
-
output, # data ptrs
|
214 |
-
x,
|
215 |
-
cos,
|
216 |
-
sin,
|
217 |
-
cu_seqlens,
|
218 |
-
seqlen_offsets,
|
219 |
-
seqlen, # shapes
|
220 |
-
nheads,
|
221 |
-
rotary_dim,
|
222 |
-
seqlen_ro,
|
223 |
-
seqlen // 128, # key for triton cache (limit number of compilations)
|
224 |
-
output.stride(0), # batch_strides
|
225 |
-
output.stride(-3), # nheads_stride
|
226 |
-
output.stride(-2), # seqlen_stride
|
227 |
-
output.stride(-1), # headdim_stride
|
228 |
-
x.stride(0), # batch_strides
|
229 |
-
x.stride(-3), # nheads stride
|
230 |
-
x.stride(-2), # seqlen stride
|
231 |
-
x.stride(-1), # headdim stride
|
232 |
-
BLOCK_K,
|
233 |
-
isinstance(seqlen_offsets, torch.Tensor),
|
234 |
-
False,
|
235 |
-
interleaved,
|
236 |
-
conjugate,
|
237 |
-
BLOCK_M,
|
238 |
-
)
|
239 |
-
return output
|
240 |
-
|
241 |
-
|
242 |
-
class ApplyRotaryEmb(torch.autograd.Function):
|
243 |
-
@staticmethod
|
244 |
-
def forward(
|
245 |
-
ctx,
|
246 |
-
x,
|
247 |
-
cos,
|
248 |
-
sin,
|
249 |
-
interleaved=False,
|
250 |
-
inplace=False,
|
251 |
-
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
252 |
-
cu_seqlens: Optional[torch.Tensor] = None,
|
253 |
-
max_seqlen: Optional[int] = None,
|
254 |
-
):
|
255 |
-
out = apply_rotary(
|
256 |
-
x,
|
257 |
-
cos,
|
258 |
-
sin,
|
259 |
-
seqlen_offsets=seqlen_offsets,
|
260 |
-
cu_seqlens=cu_seqlens,
|
261 |
-
max_seqlen=max_seqlen,
|
262 |
-
interleaved=interleaved,
|
263 |
-
inplace=inplace,
|
264 |
-
)
|
265 |
-
if isinstance(seqlen_offsets, int):
|
266 |
-
ctx.save_for_backward(cos, sin, cu_seqlens) # Can't save int with save_for_backward
|
267 |
-
ctx.seqlen_offsets = seqlen_offsets
|
268 |
-
else:
|
269 |
-
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
|
270 |
-
ctx.seqlen_offsets = None
|
271 |
-
ctx.interleaved = interleaved
|
272 |
-
ctx.inplace = inplace
|
273 |
-
ctx.max_seqlen = max_seqlen
|
274 |
-
return out if not inplace else x
|
275 |
-
|
276 |
-
@staticmethod
|
277 |
-
def backward(ctx, do):
|
278 |
-
seqlen_offsets = ctx.seqlen_offsets
|
279 |
-
if seqlen_offsets is None:
|
280 |
-
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
281 |
-
else:
|
282 |
-
cos, sin, cu_seqlens = ctx.saved_tensors
|
283 |
-
# TD [2023-09-02]: For some reason Triton (2.0.0.post1) errors with
|
284 |
-
# "[CUDA]: invalid device context", and cloning makes it work. Idk why. Triton 2.1.0 works.
|
285 |
-
if not ctx.interleaved and not ctx.inplace:
|
286 |
-
do = do.clone()
|
287 |
-
dx = apply_rotary(
|
288 |
-
do,
|
289 |
-
cos,
|
290 |
-
sin,
|
291 |
-
seqlen_offsets=seqlen_offsets,
|
292 |
-
cu_seqlens=cu_seqlens,
|
293 |
-
max_seqlen=ctx.max_seqlen,
|
294 |
-
interleaved=ctx.interleaved,
|
295 |
-
inplace=ctx.inplace,
|
296 |
-
conjugate=True,
|
297 |
-
)
|
298 |
-
return dx, None, None, None, None, None, None, None
|
299 |
-
|
300 |
-
|
301 |
-
def apply_rotary_emb(
|
302 |
-
x,
|
303 |
-
cos,
|
304 |
-
sin,
|
305 |
-
interleaved=False,
|
306 |
-
inplace=False,
|
307 |
-
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
308 |
-
cu_seqlens: Optional[torch.Tensor] = None,
|
309 |
-
max_seqlen: Optional[int] = None,
|
310 |
-
):
|
311 |
-
"""
|
312 |
-
Arguments:
|
313 |
-
x: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
|
314 |
-
else (total_seqlen, nheads, headdim)
|
315 |
-
cos, sin: (seqlen_rotary, rotary_dim / 2)
|
316 |
-
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
317 |
-
of 1st half and 2nd half (GPT-NeoX style).
|
318 |
-
inplace: if True, apply rotary embedding in-place.
|
319 |
-
seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
320 |
-
Most commonly used in inference when we have KV cache.
|
321 |
-
cu_seqlens: (batch + 1,) or None
|
322 |
-
max_seqlen: int
|
323 |
-
Return:
|
324 |
-
out: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
|
325 |
-
else (total_seqlen, nheads, headdim)
|
326 |
-
rotary_dim must be <= headdim
|
327 |
-
Apply rotary embedding to the first rotary_dim of x.
|
328 |
-
"""
|
329 |
-
return ApplyRotaryEmb.apply(
|
330 |
-
x, cos, sin, interleaved, inplace, seqlen_offsets, cu_seqlens, max_seqlen
|
331 |
-
)
|
332 |
-
|
333 |
-
|
334 |
-
# For backward compatibility
|
335 |
-
apply_rotary_emb_func = apply_rotary_emb
|
336 |
-
|
337 |
-
|
338 |
-
class FastRotaryEmbedding(torch.nn.Module):
|
339 |
-
"""
|
340 |
-
The rotary position embeddings from RoFormer_ (Su et. al).
|
341 |
-
A crucial insight from the method is that the query and keys are
|
342 |
-
transformed by rotation matrices which depend on the relative positions.
|
343 |
-
|
344 |
-
Other implementations are available in the Rotary Transformer repo_ and in
|
345 |
-
GPT-NeoX_, GPT-NeoX was an inspiration
|
346 |
-
|
347 |
-
.. _RoFormer: https://arxiv.org/abs/2104.09864
|
348 |
-
.. _repo: https://github.com/ZhuiyiTechnology/roformer
|
349 |
-
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
|
350 |
-
|
351 |
-
If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
|
352 |
-
A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
|
353 |
-
Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
|
354 |
-
"""
|
355 |
-
|
356 |
-
def __init__(
|
357 |
-
self,
|
358 |
-
dim: int,
|
359 |
-
base=10000,
|
360 |
-
interleaved=False,
|
361 |
-
scale_base=None,
|
362 |
-
pos_idx_in_fp32=True,
|
363 |
-
device=None,
|
364 |
-
):
|
365 |
-
"""
|
366 |
-
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
367 |
-
of 1st half and 2nd half (GPT-NeoX style).
|
368 |
-
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
|
369 |
-
otherwise they might be in lower precision.
|
370 |
-
This option was added because previously (before 2023-07-02), when we construct
|
371 |
-
the position indices, we use the dtype of self.inv_freq. In most cases this would
|
372 |
-
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
|
373 |
-
self.inv_freq would be bf16, and the position indices are also in bf16.
|
374 |
-
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
|
375 |
-
embeddings for some positions will coincide.
|
376 |
-
To maintain compatibility with models previously trained in pure bf16,
|
377 |
-
we add this option.
|
378 |
-
"""
|
379 |
-
super().__init__()
|
380 |
-
self.dim = dim
|
381 |
-
self.base = base
|
382 |
-
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
383 |
-
# Generate and save the inverse frequency buffer (non trainable)
|
384 |
-
inv_freq = self._compute_inv_freq(device)
|
385 |
-
self.register_buffer("inv_freq", inv_freq)
|
386 |
-
self.interleaved = interleaved
|
387 |
-
self.scale_base = scale_base
|
388 |
-
scale = (
|
389 |
-
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
390 |
-
if scale_base is not None
|
391 |
-
else None
|
392 |
-
)
|
393 |
-
self.register_buffer("scale", scale, persistent=False)
|
394 |
-
|
395 |
-
self._seq_len_cached = 0
|
396 |
-
self._cos_cached = None
|
397 |
-
self._sin_cached = None
|
398 |
-
self._cos_k_cached = None
|
399 |
-
self._sin_k_cached = None
|
400 |
-
self.cos = None
|
401 |
-
self.sin = None
|
402 |
-
|
403 |
-
def _compute_inv_freq(self, device=None):
|
404 |
-
return 1.0 / (
|
405 |
-
self.base
|
406 |
-
** (torch.arange(0, self.dim, 2, device=device) / self.dim)
|
407 |
-
# ** (torch.arange(0, self.dim, 2, device=device).float() / self.dim)
|
408 |
-
)
|
409 |
-
|
410 |
-
def _update_cos_sin_cache(self, seqlen, position_id, device=None, dtype=None):
|
411 |
-
|
412 |
-
if (
|
413 |
-
seqlen > self._seq_len_cached
|
414 |
-
):
|
415 |
-
self._seq_len_cached = seqlen
|
416 |
-
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
417 |
-
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
418 |
-
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
419 |
-
if self.pos_idx_in_fp32:
|
420 |
-
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
421 |
-
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
422 |
-
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
423 |
-
# cos & sin output to change significantly.
|
424 |
-
# We want to recompute self.inv_freq if it was not loaded in fp32
|
425 |
-
if self.inv_freq.dtype != torch.float32:
|
426 |
-
inv_freq = self._compute_inv_freq(device=device)
|
427 |
-
else:
|
428 |
-
inv_freq = self.inv_freq
|
429 |
-
else:
|
430 |
-
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
431 |
-
inv_freq = self.inv_freq
|
432 |
-
freqs = torch.einsum("i,j->ij", t, inv_freq)
|
433 |
-
if self.scale is None:
|
434 |
-
self._cos_cached = torch.cos(freqs).to(dtype)
|
435 |
-
self._sin_cached = torch.sin(freqs).to(dtype)
|
436 |
-
|
437 |
-
else:
|
438 |
-
power = (
|
439 |
-
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
|
440 |
-
- seqlen // 2
|
441 |
-
) / self.scale_base
|
442 |
-
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
443 |
-
# We want the multiplication by scale to happen in fp32
|
444 |
-
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
445 |
-
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
446 |
-
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
447 |
-
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
448 |
-
|
449 |
-
def forward(
|
450 |
-
self,
|
451 |
-
q: torch.Tensor,
|
452 |
-
k: torch.Tensor,
|
453 |
-
position_ids: torch.Tensor,
|
454 |
-
max_seqlen,
|
455 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
456 |
-
"""
|
457 |
-
q: (batch, nheads, seqlen, headdim)
|
458 |
-
k: (batch, nheads, seqlen, headdim)
|
459 |
-
position_id: (batch, seqlen)
|
460 |
-
max_seqlen: int
|
461 |
-
layer_id: int
|
462 |
-
only if layer_id == 0, then update cons and sin
|
463 |
-
Apply rotary embedding *inplace* to q k.
|
464 |
-
"""
|
465 |
-
|
466 |
-
self._update_cos_sin_cache(max_seqlen, position_ids, device=q.device, dtype=q.dtype)
|
467 |
-
cos, sin = F.embedding(position_ids, self._cos_cached), F.embedding(position_ids, self._sin_cached)
|
468 |
-
|
469 |
-
q = apply_rotary_emb_func(
|
470 |
-
q,
|
471 |
-
cos,
|
472 |
-
sin,
|
473 |
-
interleaved=self.interleaved,
|
474 |
-
inplace=True
|
475 |
-
)
|
476 |
-
k = apply_rotary_emb_func(
|
477 |
-
k,
|
478 |
-
cos,
|
479 |
-
sin,
|
480 |
-
interleaved=self.interleaved,
|
481 |
-
inplace=True
|
482 |
-
)
|
483 |
-
return q, k
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|