chenkq commited on
Commit
33e2f95
1 Parent(s): 256a361

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -0
README.md ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Quickstart
2
+
3
+ ```python
4
+ import torch
5
+ from PIL import Image
6
+ from transformers import AutoModelForCausalLM, LlamaTokenizer
7
+
8
+ tokenizer = LlamaTokenizer.from_pretrained('lmsys/vicuna-7b-v1.5')
9
+ model = AutoModelForCausalLM.from_pretrained(
10
+ 'THUDM/cogvlm-grounding-generalist-hf',
11
+ torch_dtype=torch.bfloat16,
12
+ low_cpu_mem_usage=True,
13
+ trust_remote_code=True
14
+ ).to('cuda').eval()
15
+
16
+ query = 'Can you provide a description of the image and include the coordinates [[x0,y0,x1,y1]] for each mentioned object?'
17
+ image = Image.open(requests.get('https://github.com/THUDM/CogVLM/blob/main/examples/4.jpg?raw=true', stream=True).raw).convert('RGB')
18
+ inputs = model.build_conversation_input_ids(tokenizer, query=query, images=[image])
19
+ inputs = {
20
+ 'input_ids': inputs['input_ids'].unsqueeze(0).to('cuda'),
21
+ 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to('cuda'),
22
+ 'attention_mask': inputs['attention_mask'].unsqueeze(0).to('cuda'),
23
+ 'images': [[inputs['images'][0].to('cuda').to(torch.bfloat16)]],
24
+ }
25
+ gen_kwargs = {"max_length": 2048, "do_sample": False}
26
+
27
+ with torch.no_grad():
28
+ outputs = model.generate(**inputs, **gen_kwargs)
29
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
30
+ print(tokenizer.decode(outputs[0]))
31
+ ```