|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" GLM model configuration """ |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
GLM_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"shunxing1234/GLM": "https://huggingface.co/shunxing1234/GLM/resolve/main/config.json", |
|
|
|
} |
|
|
|
|
|
class GLMConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`~GLMModel`]. |
|
It is used to instantiate an GLM model according to the specified arguments, defining the model |
|
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of |
|
the GLM [shunxing1234/GLM-base-cased](https://huggingface.co/shunxing1234/GLM-base-cased) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used |
|
to control the model outputs. Read the documentation from [`PretrainedConfig`] |
|
for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 30522): |
|
Vocabulary size of the GLM model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`~GLMModel`] or |
|
[`~TFGLMModel`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimension of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. |
|
If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (`int`, *optional*, defaults to 512): |
|
The maximum sequence length that this model might ever be used with. |
|
Typically set this to something large just in case (e.g., 512 or 1024 or 2048). |
|
type_vocab_size (`int`, *optional*, defaults to 2): |
|
The vocabulary size of the `token_type_ids` passed when calling [`~GLMModel`] or |
|
[`~TFGLMModel`]. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
Example: |
|
|
|
```python |
|
>>> from transformers import GLMModel, GLMConfig |
|
|
|
>>> # Initializing a GLM shunxing1234/GLM-base-cased style configuration |
|
>>> configuration = GLMConfig() |
|
|
|
>>> # Initializing a model from the shunxing1234/GLM-base-cased style configuration |
|
>>> model = GLMModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
``` |
|
""" |
|
model_type = "glm" |
|
attribute_map = { |
|
"num_hidden_layers": "num_layers" |
|
} |
|
|
|
def __init__( |
|
self, |
|
num_layers=24, |
|
vocab_size=30592, |
|
hidden_size=1024, |
|
num_attention_heads=16, |
|
embedding_dropout_prob=0.1, |
|
attention_dropout_prob=0.1, |
|
output_dropout_prob=0.1, |
|
max_sequence_length=512, |
|
checkpoint_activations=False, |
|
checkpoint_num_layers=1, |
|
parallel_output=True, |
|
relative_encoding=False, |
|
block_position_encoding=True, |
|
output_predict=False, |
|
spell_length=None, |
|
spell_func="lstm", |
|
attention_scale=1.0, |
|
initializer_range=0.02, |
|
pool_token="cls", |
|
classifier_dropout=None, |
|
**kwargs |
|
): |
|
self.num_layers = num_layers |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_attention_heads = num_attention_heads |
|
self.embedding_dropout_prob = embedding_dropout_prob |
|
self.attention_dropout_prob = attention_dropout_prob |
|
self.output_dropout_prob = output_dropout_prob |
|
self.max_sequence_length = max_sequence_length |
|
self.checkpoint_activations = checkpoint_activations |
|
self.checkpoint_num_layers = checkpoint_num_layers |
|
self.parallel_output = parallel_output |
|
self.relative_encoding = relative_encoding |
|
self.block_position_encoding = block_position_encoding |
|
self.output_predict = output_predict |
|
self.spell_length = spell_length |
|
self.spell_func = spell_func |
|
self.attention_scale = attention_scale |
|
self.initializer_range = initializer_range |
|
self.pool_token = pool_token |
|
self.classifier_dropout = classifier_dropout |
|
|
|
super().__init__(**kwargs) |
|
|