Update README.md (#2)
Browse files- Update README.md (f8a3bcc90c8f7eeceae25bbe8983e4c87d71fd5c)
Co-authored-by: sixgod <sixsixcoder@users.noreply.huggingface.co>
README.md
CHANGED
@@ -49,7 +49,44 @@ We evaluated the GLM-4-9B base model on some typical tasks, and the results are
|
|
49 |
|
50 |
**This repository is the base version of GLM-4-9B, supporting 8K context length.**
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
## LICENSE
|
55 |
|
|
|
49 |
|
50 |
**This repository is the base version of GLM-4-9B, supporting 8K context length.**
|
51 |
|
52 |
+
|
53 |
+
## Quick Start
|
54 |
+
|
55 |
+
**For more inference code and requirements, please visit our [github page](https://github.com/THUDM/GLM-4).**
|
56 |
+
|
57 |
+
**Please strictly follow the [dependencies](https://github.com/THUDM/GLM-4/blob/main/basic_demo/requirements.txt) to
|
58 |
+
install, otherwise it will not run properly**
|
59 |
+
|
60 |
+
### Transformers Lib(4.46.0 and later version) for inference:
|
61 |
+
|
62 |
+
```python
|
63 |
+
import torch
|
64 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
65 |
+
import os
|
66 |
+
|
67 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # Set the GPU number. If a single machine has a single card, specify one. If a single machine has multiple cards, specify multiple GPU numbers.
|
68 |
+
|
69 |
+
MODEL_PATH = "THUDM/glm-4-9b-hf"
|
70 |
+
|
71 |
+
model = AutoModelForCausalLM.from_pretrained(
|
72 |
+
MODEL_PATH,
|
73 |
+
torch_dtype=torch.bfloat16,
|
74 |
+
low_cpu_mem_usage=True,
|
75 |
+
trust_remote_code=True,
|
76 |
+
device_map="auto"
|
77 |
+
).eval()
|
78 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
80 |
+
|
81 |
+
encoding = tokenizer("what is your name?<|endoftext|>")
|
82 |
+
inputs = {key: torch.tensor([value]).to(device) for key, value in encoding.items()}
|
83 |
+
|
84 |
+
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
|
85 |
+
with torch.no_grad():
|
86 |
+
outputs = model.generate(**inputs, **gen_kwargs)
|
87 |
+
outputs = outputs[:, inputs['input_ids'].shape[1]:]
|
88 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
89 |
+
```
|
90 |
|
91 |
## LICENSE
|
92 |
|