File size: 6,999 Bytes
711d022 8ba56be 711d022 8ba56be 711d022 8ba56be 711d022 8ba56be 711d022 8ba56be 711d022 8ba56be 711d022 8ba56be 711d022 8ba56be 711d022 8ba56be 711d022 8ba56be 711d022 8ba56be 711d022 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import torch
from torch import nn
from argparse import Namespace
import torch.nn.functional as F
from transformers.activations import ACT2FN
import math
from torch.nn import LayerNorm
def standard_attention(query_layer, key_layer, value_layer, scaling_attention_score=True):
if scaling_attention_score:
query_layer = query_layer / math.sqrt(query_layer.shape[-1])
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_probs = F.softmax(attention_scores, dim=-1)
context_layer = torch.matmul(attention_probs, value_layer)
return context_layer
def attention_fn_default(query_layer, key_layer, value_layer, scaling_attention_score=True):
if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score:
# Pytorch 2.0 attention uses very much memory if attention_mask is float, and has NaN bug if attention_mask is None.
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_layer, key_layer, value_layer,
attn_mask=None,
dropout_p=0.,
is_causal=False
)
return attn_output
else:
return standard_attention(
query_layer, key_layer, value_layer, scaling_attention_score=scaling_attention_score
)
class PatchEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.proj = nn.Conv2d(config.in_channels, config.hidden_size, kernel_size=config.patch_size,
stride=config.patch_size)
self.cls_embedding = nn.Parameter(torch.zeros(1, config.hidden_size))
self.position_embedding = nn.Embedding(config.num_positions, config.hidden_size)
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
x = self.proj(images)
x = x.flatten(2).transpose(1, 2)
cls_token = self.cls_embedding.expand(x.shape[0], -1, -1)
x = torch.cat((cls_token, x), dim=1)
x += self.position_embedding.weight.unsqueeze(0)
return x
class Attention(nn.Module):
def __init__(self, config):
super().__init__()
self.num_heads = config.num_heads
head_dim = config.hidden_size // config.num_heads
self.scale = head_dim ** -0.5
self.query_key_value = nn.Linear(config.hidden_size, config.hidden_size * 3)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.output_dropout = torch.nn.Dropout(config.dropout_prob)
def forward(self, x: "tensor(B, L, D)") -> "tensor(B, L, D)":
B, L, _ = x.shape
qkv = self.query_key_value(x)
qkv = qkv.reshape(B, L, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, H, L, D
q, k, v = qkv[0], qkv[1], qkv[2]
out = attention_fn_default(
q, k, v
)
output = self.dense(out.transpose(1, 2).view(B, L, -1))
output = self.output_dropout(output)
return output
def attention(self, q, k, v):
attn_weights = torch.matmul(q * self.scale, k.transpose(-2, -1))
attn_weights = attn_weights.softmax(dim=-1)
output = torch.matmul(attn_weights, v)
return output
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc1(x)
x = self.activation_fn(x)
x = self.fc2(x)
return x
class TransformerLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.input_layernorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attention = Attention(config)
self.mlp = MLP(config)
self.post_attention_layernorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
attention_input = hidden_states
attention_output = self.input_layernorm(self.attention(attention_input))
hidden_states = attention_input + attention_output
mlp_input = hidden_states
# https://github.com/THUDM/GLM-4/issues/350
mlp_output = self.post_attention_layernorm(self.mlp(mlp_input)).to(mlp_input.device)
output = mlp_input + mlp_output
return output
class Transformer(nn.Module):
def __init__(self, config):
super().__init__()
self.layers = nn.ModuleList([TransformerLayer(config) for _ in range(config.num_hidden_layers)])
def forward(self, hidden_states):
for layer_module in self.layers:
hidden_states = layer_module(hidden_states)
return hidden_states
class GLU(nn.Module):
def __init__(self, config, in_features):
super().__init__()
self.linear_proj = nn.Linear(in_features, config.hidden_size, bias=False)
self.norm1 = nn.LayerNorm(config.hidden_size)
self.act1 = nn.GELU()
self.act2 = nn.functional.silu
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.ffn_hidden_size, bias=False)
self.gate_proj = nn.Linear(config.hidden_size, config.ffn_hidden_size, bias=False)
self.dense_4h_to_h = nn.Linear(config.ffn_hidden_size, config.hidden_size, bias=False)
def forward(self, x):
x = self.linear_proj(x)
x = self.act1(self.norm1(x))
x = self.act2(self.gate_proj(x)) * self.dense_h_to_4h(x)
x = self.dense_4h_to_h(x)
return x
class EVA2CLIPModel(nn.Module):
def __init__(self, config):
super().__init__()
vision_config = Namespace(**config.vision_config)
self.patch_embedding = PatchEmbedding(vision_config)
self.transformer = Transformer(vision_config)
self.linear_proj = GLU(config, in_features=config.hidden_size)
self.conv = nn.Conv2d(in_channels=vision_config.hidden_size, out_channels=config.hidden_size, kernel_size=2,
stride=2)
self.boi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.eoi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.scaling_factor = vision_config.scaling_factor
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
x = self.patch_embedding(images)
x = self.transformer(x)
x = x[:, 1:]
b, s, h = x.shape
grid_size = int(s ** 0.5)
x = x.view(b, grid_size, grid_size, h).permute(0, 3, 1, 2)
x = self.conv(x)
x = x.flatten(2).transpose(1, 2)
x = self.linear_proj(x)
# https://github.com/THUDM/GLM-4/issues/350
boi = self.boi.expand(x.shape[0], -1, -1).to(x.device)
eoi = self.eoi.expand(x.shape[0], -1, -1).to(x.device)
x = torch.cat((boi, x, eoi), dim=1)
x = x / self.scaling_factor
return x
|