--- frameworks: - Pytorch license: other license_name: glm-4 license_link: LICENSE pipeline_tag: image-text-to-text tags: - glm - edge inference: false --- # GLM-Edge-V-2B 中文阅读, 点击[这里](README_zh.md) ## Inference with Transformers ### Installation Install the transformers library from the source code: ```shell pip install git+https://github.com/huggingface/transformers.git ``` ### Inference ```python import torch from PIL import Image from transformers import ( AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, ) url = "img.png" messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "describe this image"}]}] image = Image.open(url) model_dir = "THUDM/glm-edge-v-5b" processor = AutoImageProcessor.from_pretrained(model_dir, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_dir, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True, ) inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_dict=True, tokenize=True, return_tensors="pt" ).to(next(model.parameters()).device) generate_kwargs = { **inputs, "pixel_values": torch.tensor(processor(image).pixel_values).to(next(model.parameters()).device), } output = model.generate(**generate_kwargs, max_new_tokens=100) print(tokenizer.decode(output[0][len(inputs["input_ids"][0]):], skip_special_tokens=True)) ``` ## License The usage of this model’s weights is subject to the terms outlined in the [LICENSE](LICENSE).