aaabiao commited on
Commit
6bd0bfe
1 Parent(s): b9e67c5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -37
README.md CHANGED
@@ -1,54 +1,62 @@
1
  ---
2
- license: other
3
- tags:
4
- - llama-factory
5
- - full
6
- - generated_from_trainer
7
- model-index:
8
- - name: scaleup_STEM_merged_10M_MOE_sft_0428_256
9
- results: []
10
  ---
 
11
 
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
 
15
- ## Model description
16
 
17
- More information needed
18
 
19
- ## Intended uses & limitations
20
 
21
- More information needed
 
 
 
 
 
 
 
 
 
22
 
23
- ## Training and evaluation data
 
24
 
25
- More information needed
 
26
 
27
- ## Training procedure
28
 
29
- ### Training hyperparameters
 
 
 
 
 
 
 
30
 
31
- The following hyperparameters were used during training:
32
- - learning_rate: 5e-06
33
- - train_batch_size: 4
34
- - eval_batch_size: 8
35
- - seed: 42
36
- - distributed_type: multi-GPU
37
- - num_devices: 256
38
- - total_train_batch_size: 1024
39
- - total_eval_batch_size: 2048
40
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
41
- - lr_scheduler_type: cosine
42
- - lr_scheduler_warmup_ratio: 0.05
43
- - num_epochs: 3.0
44
 
45
- ### Training results
46
 
 
 
 
47
 
 
 
48
 
49
- ### Framework versions
50
 
51
- - Transformers 4.40.0
52
- - Pytorch 2.3.0a0+40ec155e58.nv24.03
53
- - Datasets 2.18.0
54
- - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ language:
4
+ - en
 
 
 
 
 
5
  ---
6
+ # 🦣 MAmmoTH2: Scaling Instructions from the Web
7
 
8
+ Project Page: [https://tiger-ai-lab.github.io/MAmmoTH2/](https://tiger-ai-lab.github.io/MAmmoTH2/)
 
9
 
10
+ Paper: [https://arxiv.org/pdf/2405.03548](https://arxiv.org/pdf/2405.03548)
11
 
12
+ Code: [https://github.com/TIGER-AI-Lab/MAmmoTH2](https://github.com/TIGER-AI-Lab/MAmmoTH2)
13
 
 
14
 
15
+ ## Introduction
16
+ Introducing 🦣 MAmmoTH2, a game-changer in improving the reasoning abilities of large language models (LLMs) through innovative instruction tuning. By efficiently harvesting 10 million instruction-response pairs from the pre-training web corpus, we've developed MAmmoTH2 models that significantly boost performance on reasoning benchmarks. For instance, MAmmoTH2-7B (Mistral) sees its performance soar from 11% to 34% on MATH and from 36% to 67% on GSM8K, all without training on any domain-specific data. Further training on public instruction tuning datasets yields MAmmoTH2-Plus, setting new standards in reasoning and chatbot benchmarks. Our work presents a cost-effective approach to acquiring large-scale, high-quality instruction data, offering a fresh perspective on enhancing LLM reasoning abilities.
17
+ | | **Base Model** | **MAmmoTH2** | **MAmmoTH2-Plus** |
18
+ |------|------------------|-------------------------------------------------------------------|------------------------------------------------------------------|
19
+ | 7B | Mistral | 🦣 [MAmmoTH2-7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B) | 🦣 [MAmmoTH2-7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B-Plus) |
20
+ | 8B | Llama-3 | 🦣 [MAmmoTH2-8B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B) | 🦣 [MAmmoTH2-8B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus) |
21
+ | 8x7B | Mixtral | 🦣 [MAmmoTH2-8x7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B) | 🦣 [MAmmoTH2-8x7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B-Plus) |
22
+ ## Training Data
23
+ (WEBINSTRUCT) Coming soon...
24
+ ![Project Framework](webinstruct.png)
25
 
26
+ ## Training Procedure
27
+ The models are fine-tuned with the WEBINSTRUCT dataset using the original Llama-3, Mistral and Mistal models as base models. The training procedure varies for different models based on their sizes. Check out our paper for more details.
28
 
29
+ ## Evaluation
30
+ The models are evaluated using open-ended and multiple-choice math problems from several datasets. Here are the results:
31
 
 
32
 
33
+ | **Model** | **TheoremQA** | **MATH** | **GSM8K** | **GPQA** | **MMLU-ST** | **BBH** | **ARC-C** | **Avg** |
34
+ |------------------------|---------------|----------|-----------|----------|-------------|---------|-----------|---------|
35
+ | **MAmmoTH2-7B** | 26.7 | 34.2 | 67.4 | 34.8 | 60.6 | 60.0 | 81.8 | 52.2 |
36
+ | **MAmmoTH2-8B** | 29.7 | 33.4 | 67.9 | 38.4 | 61.0 | 60.8 | 81.0 | 53.1 |
37
+ | **MAmmoTH2-8x7B** | 32.2 | 39.0 | 75.4 | 36.8 | 67.4 | 71.1 | 87.5 | 58.9 |
38
+ | **MAmmoTH2-7B-Plus** | 29.2 | 45.0 | 84.7 | 36.8 | 64.5 | 63.1 | 83.0 | 58.0 |
39
+ | **MAmmoTH2-8B-Plus** | 32.5 | 42.8 | 84.1 | 37.3 | 65.7 | 67.8 | 83.4 | 59.1 |
40
+ | **MAmmoTH2-8x7B-Plus** | 34.1 | 47.0 | 86.4 | 37.8 | 72.4 | 74.1 | 88.4 | 62.9 |
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
 
43
 
44
+ ## Usage
45
+ You can use the models through Huggingface's Transformers library. Use the pipeline function to create a text-generation pipeline with the model of your choice, then feed in a math problem to get the solution.
46
+ Check our Github repo for more advanced use: [https://github.com/TIGER-AI-Lab/MAmmoTH2](https://github.com/TIGER-AI-Lab/MAmmoTH2)
47
 
48
+ ## Limitations
49
+ We've tried our best to build math generalist models. However, we acknowledge that the models' performance may vary based on the complexity and specifics of the math problem. Still not all mathematical fields can be covered comprehensively.
50
 
 
51
 
52
+ ## Citation
53
+ If you use the models, data, or code from this project, please cite the original paper:
54
+
55
+ ```
56
+ @article{yue2024mammoth2,
57
+ title={MAmmoTH2: Scaling Instructions from the Web},
58
+ author={Xiang Yue, Tuney Zheng, Ge Zhang, Wenhu Chen},
59
+ journal={arXiv preprint arXiv:2405.03548v1},
60
+ year={2024}
61
+ }
62
+ ```