File size: 8,161 Bytes
472e87c
 
 
 
 
 
 
 
 
d943666
472e87c
 
34854fb
472e87c
 
 
 
 
2b9dbda
443f909
 
472e87c
 
 
 
 
 
 
 
 
bf11f42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472e87c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f183e8f
 
 
 
 
 
 
 
472e87c
f183e8f
472e87c
 
f183e8f
472e87c
 
 
 
f183e8f
472e87c
 
 
 
 
 
 
f183e8f
472e87c
 
 
 
 
 
 
 
 
 
 
f183e8f
472e87c
 
 
f183e8f
472e87c
 
 
 
 
 
 
f183e8f
472e87c
 
 
 
f183e8f
 
 
 
472e87c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
license: mit
datasets:
  - TIGER-Lab/VideoFeedback
language:
  - en
metrics:
  - accuracy/spcc
library_name: transformers
pipeline_tag: video-text-to-text
---

[📃Paper](https://arxiv.org/abs/2406.15252) | [🌐Website](https://tiger-ai-lab.github.io/VideoScore/) | [💻Github](https://github.com/TIGER-AI-Lab/VideoScore) | [🛢️Datasets](https://huggingface.co/datasets/TIGER-Lab/VideoFeedback) | [🤗Model (VideoScore)](https://huggingface.co/TIGER-Lab/VideoScore) | [🤗Model (VideoScore-anno-only)](https://huggingface.co/TIGER-Lab/VideoScore-anno-only) | [🤗Model (VideoScore-v1.1)](https://huggingface.co/TIGER-Lab/VideoScore-v1.1)| [🤗Demo](https://huggingface.co/spaces/TIGER-Lab/VideoScore)


![VideoScore](https://tiger-ai-lab.github.io/VideoScore/static/images/teaser.png)

## Introduction
- 🤯🤯Try on the new version [VideoScore-v1.1](https://huggingface.co/TIGER-Lab/VideoScore-v1.1), a variant from [VideoScore](https://huggingface.co/TIGER-Lab/VideoScore) with better performance in **"text-to-video alignment"** subscore and the support for **48 frames** in inference now!

- [VideoScore](https://huggingface.co/TIGER-Lab/VideoScore) series is a video quality evaluation model series, taking [Mantis-8B-Idefics2](https://huggingface.co/TIGER-Lab/Mantis-8B-Idefics2) as base-model
and trained on [VideoFeedback](https://huggingface.co/datasets/TIGER-Lab/VideoFeedback),
a large video evaluation dataset with multi-aspect human scores. 

- Following VideoScore, VideoScore-v1.1 can also reach about 75 Spearman correlation with humans on VideoFeedback-test, surpassing all the MLLM-prompting methods and feature-based metrics. 
VideoScore-v1.1 also beat the best baselines on other two benchmarks GenAI-Bench and VBench, showing high alignment with human evaluations.
For the data details of these benchmarks, please refer to [VideoScore-Bench](https://huggingface.co/datasets/TIGER-Lab/VideoScore-Bench).

- VideoScore-v1.1 is a **regression version** model.


## Evaluation Results

We test VideoScore-v1.1 on VideoFeedback-test and take Spearman corrleation between model's output and human ratings 
averaged among all the evaluation aspects as indicator. 

The evaluation results are shown below: 

| metric            | VideoFeedback-test | 
|:-----------------:|:------------------:|
| VideoScore-v1.1   |           **74.0** |
| Gemini-1.5-Pro    |               22.1 |  
| Gemini-1.5-Flash  |               20.8 | 
| GPT-4o            |        <u>23.1</u> |
| CLIP-sim          |                8.9 |
| DINO-sim          |                7.5 | 
| SSIM-sim          |               13.4 |
| CLIP-Score        |               -7.2 |
| LLaVA-1.5-7B      |                8.5 | 
| LLaVA-1.6-7B      |               -3.1 | 
| X-CLIP-Score      |               -1.9 |  
| PIQE              |              -10.1 |    
| BRISQUE           |              -20.3 |    
| Idefics2          |                6.5 |  
| MSE-dyn           |               -5.5 |   
| SSIM-dyn          |              -12.9 |    

The best in VideoScore series is in bold and the best in baselines is underlined. 


## Usage
### Installation
```
pip install git+https://github.com/TIGER-AI-Lab/VideoScore.git
# or
# pip install mantis-vl
```

### Inference
```
cd VideoScore/examples
```

```python
import av
import numpy as np
from typing import List
from PIL import Image
import torch
from transformers import AutoProcessor
from mantis.models.idefics2 import Idefics2ForSequenceClassification
def _read_video_pyav(
    frame_paths:List[str], 
    max_frames:int,
):
    frames = []
    container.seek(0)
    start_index = indices[0]
    end_index = indices[-1]
    for i, frame in enumerate(container.decode(video=0)):
        if i > end_index:
            break
        if i >= start_index and i in indices:
            frames.append(frame)
    return np.stack([x.to_ndarray(format="rgb24") for x in frames])

ROUND_DIGIT=3
REGRESSION_QUERY_PROMPT = """
Suppose you are an expert in judging and evaluating the quality of AI-generated videos,
please watch the following frames of a given video and see the text prompt for generating the video,
then give scores from 5 different dimensions:
(1) visual quality: the quality of the video in terms of clearness, resolution, brightness, and color
(2) temporal consistency, both the consistency of objects or humans and the smoothness of motion or movements
(3) dynamic degree, the degree of dynamic changes
(4) text-to-video alignment, the alignment between the text prompt and the video content
(5) factual consistency, the consistency of the video content with the common-sense and factual knowledge
for each dimension, output a float number from 1.0 to 4.0,
the higher the number is, the better the video performs in that sub-score, 
the lowest 1.0 means Bad, the highest 4.0 means Perfect/Real (the video is like a real video)
Here is an output example:
visual quality: 3.2
temporal consistency: 2.7
dynamic degree: 4.0
text-to-video alignment: 2.3
factual consistency: 1.8
For this video, the text prompt is "{text_prompt}",
all the frames of video are as follows:
"""

# MAX_NUM_FRAMES=16
# model_name="TIGER-Lab/VideoScore"

# =======================================
# we support 48 frames in VideoScore-v1.1
# =======================================
MAX_NUM_FRAMES=48
model_name="TIGER-Lab/VideoScore-v1.1"

video_path="video1.mp4"
video_prompt="Near the Elephant Gate village, they approach the haunted house at night. Rajiv feels anxious, but Bhavesh encourages him. As they reach the house, a mysterious sound in the air adds to the suspense."

processor = AutoProcessor.from_pretrained(model_name,torch_dtype=torch.bfloat16)
model = Idefics2ForSequenceClassification.from_pretrained(model_name,torch_dtype=torch.bfloat16).eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# sample uniformly 8 frames from the video
container = av.open(video_path)
total_frames = container.streams.video[0].frames
if total_frames > MAX_NUM_FRAMES:
    indices = np.arange(0, total_frames, total_frames / MAX_NUM_FRAMES).astype(int)
else:
    indices = np.arange(total_frames)

frames = [Image.fromarray(x) for x in _read_video_pyav(container, indices)]
eval_prompt = REGRESSION_QUERY_PROMPT.format(text_prompt=video_prompt)
num_image_token = eval_prompt.count("<image>")
if num_image_token < len(frames):
    eval_prompt += "<image> " * (len(frames) - num_image_token)
flatten_images = []
for x in [frames]:
    if isinstance(x, list):
        flatten_images.extend(x)
    else:
        flatten_images.append(x)

flatten_images = [Image.open(x) if isinstance(x, str) else x for x in flatten_images]
inputs = processor(text=eval_prompt, images=flatten_images, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}

with torch.no_grad():
    outputs = model(**inputs)
logits = outputs.logits
num_aspects = logits.shape[-1]
aspect_scores = []
for i in range(num_aspects):
    aspect_scores.append(round(logits[0, i].item(),ROUND_DIGIT))

print(aspect_scores)
"""
model output on visual quality, temporal consistency, dynamic degree,
text-to-video alignment, factual consistency, respectively
VideoScore: 
[2.297, 2.469, 2.906, 2.766, 2.516]

VideoScore-v1.1:
[2.328, 2.484, 2.562, 1.969, 2.594]
"""
```

### Training
see [VideoScore/training](https://github.com/TIGER-AI-Lab/VideoScore/tree/main/training) for details

### Evaluation
see [VideoScore/benchmark](https://github.com/TIGER-AI-Lab/VideoScore/tree/main/benchmark) for details

## Citation
```bibtex
@article{he2024videoscore,
  title = {VideoScore: Building Automatic Metrics to Simulate Fine-grained Human Feedback for Video Generation},
  author = {He, Xuan and Jiang, Dongfu and Zhang, Ge and Ku, Max and Soni, Achint and Siu, Sherman and Chen, Haonan and Chandra, Abhranil and Jiang, Ziyan and Arulraj, Aaran and Wang, Kai and Do, Quy Duc and Ni, Yuansheng and Lyu, Bohan and Narsupalli, Yaswanth and Fan, Rongqi and Lyu, Zhiheng and Lin, Yuchen and Chen, Wenhu},
  journal = {ArXiv},
  year = {2024},
  volume={abs/2406.15252},
  url = {https://arxiv.org/abs/2406.15252},
}
```