File size: 4,256 Bytes
997f5a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
license: creativeml-openrail-m
language: en
tags:
- LLM
- ChatGLM
---
## Breakings!
**We know what you want, and here they are!**
- Newly released lyraChatGLM model, suitable for Ampere(A100/A10) as well as Volta(V100)
- lyraChatGLM has been further optimized, reaches **9000tokens/s** on A100 and **3900 tokens/s** on V100, about **5.5x** faster than original version(2023/6/1).
- The memory usage was optimized too, now we can set batch_size up to **256** on A100!
**Note that the code was fully updated too, you need to use new API, see `Uses` below**
## Model Card for lyraChatGLM
lyraChatGLM is currently the **fastest ChatGLM-6B** available. To the best of our knowledge, it is the **first accelerated version of ChatGLM-6B**.
The inference speed of lyraChatGLM has achieved **300x** acceleration upon the ealry original version. We are still working hard to further improve the performance.
Among its main features are:
- weights: original ChatGLM-6B weights released by THUDM.
- device: Nvidia GPU with Amperer architecture or Volta architecture (A100, A10, V100...).
- batch_size: compiled with dynamic batch size, maximum depends on device.
## Speed
- orginal version(fixed batch infer): commit id 1d240ba
### test on A100 40G
|version|max_batch_size|max_speed|
|:-:|:-:|:-:|
|original|1|30 tokens/s|
|original(fxied batch infer)|192|1638.52 toekns/s|
|lyraChatGLM(current)|256|9082.60+ tokens/s|
### test on V100
|version|max_batch_size|max_speed|
|:-:|:-:|:-:|
|original|1|17.83 tokens/s|
|original(fxied batch infer)|128|992.20 toekns/s|
|lyraChatGLM(current)|192|3911.45+ tokens/s|
## Model Sources
- **Repository:** https://huggingface.co/THUDM/chatglm-6b
## Docker Environment
- **docker image available** at [https://hub.docker.com/repository/docker/bigmoyan/lyrallm/general], pull image by:
```
docker pull bigmoyan/lyrallm:v0.1
```
## Uses
```python
from lyraChatGLM import LyraChatGLM6B
model_path = "./models/1-gpu-fp16.h5"
tokenizer_path = "./models"
data_type = "fp16"
int8_mode = 0
max_output_length = 150
arch = "Ampere" # Ampere or Volta
model = LyraChatGLM6B(model_path, tokenizer_path, data_type, int8_mode, arch)
prompt = "列出3个不同的机器学习算法,并说明它们的适用范围."
test_batch_size = 256
prompts = [prompt, ]
# If you want to get different output in same batch, you can set do_sample to True
output_texts = model.generate(prompts, output_length=max_output_length,top_k=30, top_p=0.85, temperature=0.35, repetition_penalty=1.2, do_sample=False)
print(output_texts)
```
## Demo output
### input
列出3个不同的机器学习算法,并说明它们的适用范围.
### output
以下是三个常见的机器学习算法及其适用范围:
1. 决策树(Decision Tree):决策树是一种基于分类和回归问题的朴素贝叶斯模型。它通过构建一系列逐步分裂的分支来预测结果。适用于那些具有简单特征、大量数据且数据集大小在可接受范围内的情况。
2. 随机森林(Random Forest):随机森林是一种集成学习算法,由多个决策树组成。它的优点是能够处理大规模数据和高维度的特征。适用于需要对多个变量进行建模的场景,例如医疗诊断、金融风险评估等。
3. 支持向量机(Support Vector Machine):支持向量机是一种监督学习方法,通常用于分类问题。它可以处理高维数据,并且具有较高的准确性。适用于需要对高维数据进行分类或回归的问题,例如图像识别、自然语言处理等。
## Citation
``` bibtex
@Misc{lyraChatGLM2023,
author = {Kangjian Wu, Zhengtao Wang, Yibo Lu, Bin Wu},
title = {lyraChatGLM: Accelerating ChatGLM by 5.5x+},
howpublished = {\url{https://huggingface.co/TMElyralab/lyraChatGLM}},
year = {2023}
}
```
## Report bug
- start a discussion to report any bugs!--> https://huggingface.co/TMElyralab/lyraChatGLM/discussions
- report bug with a `[bug]` mark in the title.
|