--- license: creativeml-openrail-m language: - en tags: - LLM - tensorRT - ChatGLM --- ## Model Card for lyraChatGLM lyraChatGLM is currently the **fastest ChatGLM-6B** available. To the best of our knowledge, it is the **first accelerated version of ChatGLM-6B**. The inference speed of lyraChatGLM has achieved **10x** acceleration upon the ealry original version. We are still working hard to further improve the performance. Among its main features are: - weights: original ChatGLM-6B weights released by THUDM. - device: lyraChatGLM is mainly based on TensorRT compiled for SM=80 (A100, for example). - batch_size: compiled with dynamic batch size, max batch_size = 8 ## Speed ### test environment - device: Nvidia A100 40G - batch size: 8 **Since early chatGLM version didn't suport batch inference, `original` in below table was measured on batch_size=1** **According to [this discussion](https://huggingface.co/TMElyralab/lyraChatGLM/discussions/6), this bug has been fixed and the speed on batch_size=8 reachs up to 137 tokens/s. We will evaluate and update the latest performance.** |version|speed| |:-:|:-:| |original|30 tokens/s| |lyraChatGLM|310 tokens/s| ## Model Sources - **Repository:** [https://huggingface.co/THUDM/chatglm-6b] ## Try Demo in 2 fast steps ``` bash #step 1 git clone https://huggingface.co/TMElyralab/lyraChatGLM cd lyraChatGLM #step 2 docker run --gpus=1 --rm --net=host -v ${PWD}:/workdir yibolu96/lyra-chatglm-env:0.0.1 python3 /workdir/demo.py ``` ## Uses ```python from transformers import AutoTokenizer from lyraChatGLM import GLM6B, FasterChatGLM import os current_workdir = os.path.dirname(__file__) MAX_OUT_LEN = 100 chatglm6b_dir = os.path.join(current_workdir, "models") tokenizer = AutoTokenizer.from_pretrained(chatglm6b_dir, trust_remote_code=True) input_str = ["为什么我们需要对深度学习模型加速?", ] inputs = tokenizer(input_str, return_tensors="pt", padding=True) input_ids = inputs.input_ids.to('cuda:0') plan_path = os.path.join(current_workdir, "models/glm6b-bs8.ftm") # kernel for chat model. kernel = GLM6B(plan_path=plan_path, batch_size=1, num_beams=1, use_cache=True, num_heads=32, emb_size_per_heads=128, decoder_layers=28, vocab_size=150528, max_seq_len=MAX_OUT_LEN) chat = FasterChatGLM(model_dir=chatglm6b_dir, kernel=kernel).half().cuda() # generate sample_output = chat.generate(inputs=input_ids, max_length=MAX_OUT_LEN) # de-tokenize model output to text res = tokenizer.decode(sample_output[0], skip_special_tokens=True) print(res) ``` ## Demo output ### input 为什么我们需要对深度学习模型加速? 。 ### output 为什么我们需要对深度学习模型加速? 深度学习模型的训练需要大量计算资源,特别是在训练模型时,需要大量的内存、GPU(图形处理器)和其他计算资源。因此,训练深度学习模型需要一定的时间,并且如果模型不能快速训练,则可能会导致训练进度缓慢或无法训练。 以下是一些原因我们需要对深度学习模型加速: 1. 训练深度神经网络需要大量的计算资源,特别是在训练深度神经网络时,需要更多的计算资源,因此需要更快的训练速度。 ### TODO: We plan to implement a FasterTransformer version to publish a much faster release. Stay tuned! ## Citation ``` bibtex @Misc{lyraChatGLM2023, author = {Kangjian Wu, Zhengtao Wang, Yibo Lu, Bin Wu}, title = {lyraChatGLM: Accelerating ChatGLM by 10x+}, howpublished = {\url{https://huggingface.co/TMElyralab/lyraChatGLM}}, year = {2023} } ``` ## Report bug - start a discussion to report any bugs!--> https://huggingface.co/TMElyralab/lyraChatGLM/discussions - report bug with a `[bug]` mark in the title.