File size: 6,790 Bytes
f091363
39adea4
f091363
 
 
 
39adea4
f091363
 
77ec709
f091363
77ec709
f091363
39adea4
f091363
39adea4
 
 
f091363
 
39adea4
f091363
39adea4
 
 
 
 
 
f091363
39adea4
f091363
39adea4
 
 
f091363
 
39adea4
f091363
39adea4
f091363
39adea4
 
 
 
 
 
 
 
 
f091363
77ec709
 
39adea4
f091363
 
 
77ec709
39adea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77ec709
39adea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f091363
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
license: apache-2.0
---



<img src="https://cdn-uploads.huggingface.co/production/uploads/63118add64939fabc0108b28/BB42g4V8HTxb5dR4tcy8A.png" alt="DCLM Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>


# Model Card for DCLM-1B

DCLM-1B is a 1.4 billion parameter language model trained on the DCLM-Baseline dataset, which was curated as part of the DataComp for Language Models (DCLM) benchmark. This model is designed to showcase the effectiveness of systematic data curation techniques for improving language model performance.

## Model Details

| Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
|------|-----------------|--------|-------------|-----------------|----------------|
| 1.4B   | 2.6T            | 24     | 2048        | 16              | 2048           |


### Model Description

- **Developed by:** DataComp for Language Models (DCLM) Team
- **Model type:** Decoder-only Transformer language model
- **Language(s):** English (primarily)
- **License:** Apache 2.0
- **Contact:** contact@datacomp.ai
- **Date:** July 2024

### Model Sources

- **Repository:** https://github.com/mlfoundations/dclm
- **Dataset:** https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0
- **Paper:** [DataComp-LM: In search of the next generation of training sets for language models](https://arxiv.org/abs/2406.11794)


### Training Details

The model was trained using the following setup:

- **Architecture:** Decoder-only Transformer 
- **Framework:** PyTorch with OpenLM
- **Optimizer:** AdamW
- **Learning Rate:** 1e-2 (peak)
- **Weight Decay:** 1e-2
- **Batch Size:** 2048 sequences
- **Sequence Length:** 2048 tokens
- **Total Training Tokens:** 2.6T
- **Hardware:** Trained on H100 GPUs

For more detailed training information, please refer to Appendix P.3 of the
paper.
To ensure our trained model is broadly useful, including for math and coding tasks, we combine our 3.8T [DCLM-BASELINE](https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0)  with the [StarCoder](https://huggingface.co/datasets/bigcode/starcoderdata)  and [ProofPile2](https://huggingface.co/datasets/EleutherAI/proof-pile-2) data to arrive at a 4.1T token dataset.

## Evaluation

Here are the evaluation results for DCLM-1B on various tasks (using [llm-foundry](https://github.com/mosaicml/llm-foundry) eval suite)

| Task                                     | Score   |
|------------------------------------------|---------|
| AGI Eval LSAT AR                         |  0.2348 |
| AGI Eval LSAT LR                         |  0.3098 |
| AGI Eval LSAT RC                         |  0.3321 |
| AGI Eval SAT English                     |  0.3883 |
| AGI Eval SAT Math (CoT)                  |  0.0182 |
| AQuA (CoT)                               |  0.0245 |
| ARC (challenge)                          |  0.4343 |
| ARC (easy)                               |  0.7290 |
| BBQ                                      |  0.4670 |
| BigBench Conceptual Combinations         |  0.4660 |
| BigBench Conlang Translation             |  0.0732 |
| BigBench CS Algorithms                   |  0.4515 |
| BigBench Dyck Languages                  |  0.1990 |
| BigBench Elementary Math QA              |  0.2558 |
| BigBench Language Identification         |  0.2911 |
| BigBench Logical Deduction               |  0.2480 |
| BigBench Misconceptions                  |  0.5068 |
| BigBench Novel Concepts                  |  0.5312 |
| BigBench Operators                       |  0.2714 |
| BigBench QA Wikidata                     |  0.6687 |
| BigBench Repeat Copy Logic               |  0.1562 |
| BigBench Strange Stories                 |  0.6839 |
| BigBench Strategy QA                     |  0.5762 |
| BigBench Understanding Fables            |  0.4127 |
| BoolQ                                    |  0.7131 |
| CommonSenseQA                            |  0.6110 |
| COPA                                     |  0.7900 |
| CoQA                                     |  0.4257 |
| Enterprise PII Classification            |  0.5110 |
| GPQA Diamond                             |  0.2121 |
| GPQA                                     |  0.2344 |
| GSM8K (CoT)                              |  0.0371 |
| HellaSwag                                |  0.7087 |
| HellaSwag (zero-shot)                    |  0.7001 |
| Jeopardy                                 |  0.4218 |
| LAMBADA (OpenAI)                         |  0.6938 |
| LogiQA                                   |  0.3026 |
| MathQA                                   |  0.2598 |
| MMLU (few-shot)                          |  0.4193 |
| MMLU (zero-shot)                         |  0.3543 |
| OpenBookQA                               |  0.4380 |
| PIQA                                     |  0.7786 |
| PubMedQA (labeled)                       |  0.2560 |
| Simple Arithmetic (no spaces)            |  0.0280 |
| Simple Arithmetic (with spaces)          |  0.0300 |
| SIQA                                     |  0.6735 |
| SQuAD                                    |  0.5424 |
| SVAMP (CoT)                              |  0.1800 |
| TriviaQA (small subset)                  |  0.3603 |
| Winogender (MC female)                   |  0.4833 |
| Winogender (MC male)                     |  0.5000 |
| Winograd                                 |  0.8352 |
| Winogrande                               |  0.6527 |

Note: All scores are presented as decimal values between 0 and 1, representing the proportion of correct answers or the model's performance on each task.


## Limitations and Biases

While DCLM-1B demonstrates strong performance across a range of tasks, it's important to note:

1. The model may exhibit biases present in its training data, which is derived from web crawl data.
2. It has not undergone specific alignment or safety fine-tuning, so outputs should be used with caution.
3. Performance on tasks not included in the evaluation suite may vary.
4. The model's knowledge is limited to its training data cutoff date.

## Ethical Considerations

Users should be aware that this model, like all large language models, can potentially generate harmful or biased content. It should not be used for making decisions about individuals or in sensitive applications without appropriate safeguards and human oversight.

## Citation

If you use this model in your research, please cite:

```
@article{Li2024DataCompLM,
  title={DataComp-LM: In search of the next generation of training sets for language models},
  author={Jeffrey Li and Alex Fang and Georgios Smyrnis and Maor Ivgi and Matt Jordan and Samir Gadre and Hritik Bansal and Etash Guha and Sedrick Keh and Kushal Arora and [... full author list]},
  journal={arXiv preprint arXiv:2406.11794},
  year={2024}
}
```