File size: 1,129 Bytes
53167e9 88ad380 53167e9 88ad380 53167e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
---
license: mit
---
Thanks for Tencent release the controlenet training code, so Just a test version for Hunyuan tile model. More test is on going. join my personal qq group 294060503 for more discussion
Please follow https://github.com/Tencent/HunyuanDiT/blob/main/controlnet/README.md to run the model.
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/641edd91eefe94aff6de024c/928OhsRzsu7azmoWLGUXx.jpeg)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/641edd91eefe94aff6de024c/yQ9PSkdpP9hss8Y4CXwAO.png)
remember modify the ./hydit/config.py change the line 50 to
parser.add_argument("--control-type", type=str, default='canny', choices=['canny', 'depth', 'pose', 'tile'], help="Controlnet condition type")
Inference example
You can use the following command line for inference.
a. Using canny ControlNet during inference
python3 sample_controlnet.py --no-enhance --load-key ema --infer-steps 100 --control-type tile --prompt "input your prompt here" --condition-image-path controlnet/asset/input/yourimg.jpg --control-weight 1.0
b. Using pose ControlNet during inference
|