--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - medmnist-v2 metrics: - accuracy - f1 model-index: - name: ViT_bloodmnist results: - task: name: Image Classification type: image-classification dataset: name: medmnist-v2 type: medmnist-v2 config: bloodmnist split: validation args: bloodmnist metrics: - name: Accuracy type: accuracy value: 0.9748611517100263 - name: F1 type: f1 value: 0.97180354304681 --- # ViT_bloodmnist This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.0879 - Accuracy: 0.9749 - F1: 0.9718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2747 | 1.0 | 374 | 0.0930 | 0.9696 | 0.9652 | | 0.0955 | 2.0 | 748 | 0.0998 | 0.9702 | 0.9670 | | 0.0405 | 3.0 | 1122 | 0.0812 | 0.9743 | 0.9725 | | 0.0194 | 4.0 | 1496 | 0.0829 | 0.9796 | 0.9784 | | 0.0081 | 5.0 | 1870 | 0.1328 | 0.9720 | 0.9696 | | 0.0026 | 6.0 | 2244 | 0.1252 | 0.9743 | 0.9735 | | 0.0004 | 7.0 | 2618 | 0.0997 | 0.9790 | 0.9778 | | 0.0001 | 8.0 | 2992 | 0.1049 | 0.9784 | 0.9768 | | 0.0001 | 9.0 | 3366 | 0.1072 | 0.9778 | 0.9761 | | 0.0001 | 10.0 | 3740 | 0.1077 | 0.9778 | 0.9761 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1