--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - medmnist-v2 metrics: - accuracy - f1 model-index: - name: ViT_breastmnist results: - task: name: Image Classification type: image-classification dataset: name: medmnist-v2 type: medmnist-v2 config: breastmnist split: validation args: breastmnist metrics: - name: Accuracy type: accuracy value: 0.8653846153846154 - name: F1 type: f1 value: 0.8156962025316457 --- # ViT_breastmnist This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3570 - Accuracy: 0.8654 - F1: 0.8157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.5391 | 0.5556 | 10 | 0.4007 | 0.7949 | 0.6698 | | 0.3685 | 1.1111 | 20 | 0.3650 | 0.8718 | 0.8120 | | 0.2275 | 1.6667 | 30 | 0.3601 | 0.8462 | 0.8101 | | 0.1604 | 2.2222 | 40 | 0.2938 | 0.8718 | 0.8319 | | 0.0624 | 2.7778 | 50 | 0.2966 | 0.8846 | 0.8511 | | 0.0597 | 3.3333 | 60 | 0.4313 | 0.8974 | 0.8556 | | 0.029 | 3.8889 | 70 | 0.4105 | 0.8718 | 0.8194 | | 0.0094 | 4.4444 | 80 | 0.3746 | 0.9103 | 0.8803 | | 0.0077 | 5.0 | 90 | 0.4098 | 0.8974 | 0.8655 | | 0.0082 | 5.5556 | 100 | 0.4451 | 0.9103 | 0.8803 | | 0.0024 | 6.1111 | 110 | 0.4599 | 0.8974 | 0.8655 | | 0.0028 | 6.6667 | 120 | 0.4739 | 0.8974 | 0.8608 | | 0.0013 | 7.2222 | 130 | 0.4653 | 0.8974 | 0.8655 | | 0.0016 | 7.7778 | 140 | 0.4927 | 0.8974 | 0.8608 | | 0.0011 | 8.3333 | 150 | 0.5115 | 0.8974 | 0.8608 | | 0.0015 | 8.8889 | 160 | 0.5055 | 0.8974 | 0.8608 | | 0.0007 | 9.4444 | 170 | 0.4982 | 0.8974 | 0.8608 | | 0.0011 | 10.0 | 180 | 0.4975 | 0.8974 | 0.8608 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0