--- license: other base_model: microsoft/phi-2 tags: - generated_from_trainer - medical - peft - 'lora ' model-index: - name: Thealth-phi-2-tunned-9_medalpaca_medical_meadow results: [] datasets: - medalpaca/medical_meadow_mediqa - medalpaca/medical_meadow_mmmlu - medalpaca/medical_meadow_medical_flashcards - medalpaca/medical_meadow_wikidoc_patient_information - medalpaca/medical_meadow_wikidoc - medalpaca/medical_meadow_pubmed_causal - medalpaca/medical_meadow_medqa - medalpaca/medical_meadow_health_advice - medalpaca/medical_meadow_cord19 pipeline_tag: conversational --- ![Medical Phi Symbol Cartoon](https://github.com/mostafadentist/huggingface/blob/main/medical_phi_%CF%95_cartoon.png?raw=true) # Thealth-phi-2-tunned-9_medalpaca_medical_meadow This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.6588 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data Training is done one 9 medalpaca/medical_meadow datasets combined and splited to 90% train and 10% Evaluation | Dataset | |:-----------------------------------------------------:| | medalpaca/medical_meadow_mediqa | | medalpaca/medical_meadow_mmmlu | | medalpaca/medical_meadow_medical_flashcards | | medalpaca/medical_meadow_wikidoc_patient_information | | medalpaca/medical_meadow_wikidoc | | medalpaca/medical_meadow_pubmed_causal | | medalpaca/medical_meadow_medqa | | medalpaca/medical_meadow_health_advice | | medalpaca/medical_meadow_cord19 | ## Training procedure Used different tokenizer [stanford-crfm/BioMedLM](https://huggingface.co/stanford-crfm/BioMedLM) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.8245 | 0.0 | 500 | 6.7654 | | 6.7944 | 0.0 | 1000 | 6.6588 | ### Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("stanford-crfm/BioMedLM", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("TachyHealthResearch/Thealth-phi-2-tunned-9_medalpaca_medical_meadow", trust_remote_code=True, torch_dtype=torch.float32) ``` ```python inputs = tokenizer( """ question: ****** ? answer: """, return_tensors="pt", return_attention_mask=False) ``` ```python outputs = model.generate(**inputs, max_length=512) text = tokenizer.batch_decode(outputs)[0] print(text) ``` ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0