Tacoin GR00T Libero Spatial (Checkpoint 7500)
Tacoin fine-tuned GR00T checkpoint trained on the LIBERO libero spatial benchmark. The policy consumes dual RGB views (video.image, video.wrist_image) plus an 8-D state and predicts 16 joint-space actions using the diffusion head.
Training Snapshot
- Base model:
nvidia/GR00T-N1.5-3B - Checkpoint step: 7500 / 8000
- Dataset: libero_spatial (10 tasks, 432 demos @ 10.0 FPS)
- Run notes: spatial skill subset finetune
Evaluation
Offline reconstruction evaluated on 10 evenly spaced trajectories (160 steps each) with decord backend and denoising_steps=4. Metrics are on unnormalized actions.
| Metric | Value |
|---|---|
| Average MSE | 0.04266 |
| Median MSE | 0.03278 |
| Std MSE | 0.02492 |
| Max MSE | 0.10053 |
| Fraction ≤ 0.05 | 80.0% |
| Fraction ≤ 0.075 | 80.0% |
| Fraction ≤ 0.10 | 90.0% |
Usage
from gr00t.experiment.data_config import load_data_config
from gr00t.model.policy import Gr00tPolicy
ckpt = 'Tacoin/GR00T-N1.5-3B-LIBERO-SPATIAL'
data_config = load_data_config('libero_gr00t')
policy = Gr00tPolicy(
model_path=ckpt,
modality_config=data_config.modality_config(),
modality_transform=data_config.transform(),
embodiment_tag='new_embodiment',
denoising_steps=4,
)
Pass a LeRobot observation dict to policy.get_action(...) to obtain the 16-step plan.
Files
| Path | Description |
|---|---|
config.json |
Transformer config for the action head. |
model-0000x-of-00002.safetensors |
Sharded weights. |
model.safetensors.index.json |
Weight shard index. |
experiment_cfg/metadata.json |
Dataset statistics for normalization. |
optimizer.pt, scheduler.pt, rng_state.pth |
Optimizer state for resuming. |
trainer_state.json |
Trainer snapshot (loss curves, etc.). |
License
Apache-2.0. Please credit NVIDIA Isaac GR00T and LIBERO when using this checkpoint.
- Downloads last month
- 15
Model tree for Tacoin/GR00T-N1.5-3B-LIBERO-SPATIAL
Base model
nvidia/GR00T-N1.5-3B