Tacoin GR00T Libero Spatial (Checkpoint 7500)

Tacoin fine-tuned GR00T checkpoint trained on the LIBERO libero spatial benchmark. The policy consumes dual RGB views (video.image, video.wrist_image) plus an 8-D state and predicts 16 joint-space actions using the diffusion head.

Training Snapshot

  • Base model: nvidia/GR00T-N1.5-3B
  • Checkpoint step: 7500 / 8000
  • Dataset: libero_spatial (10 tasks, 432 demos @ 10.0 FPS)
  • Run notes: spatial skill subset finetune

Evaluation

Offline reconstruction evaluated on 10 evenly spaced trajectories (160 steps each) with decord backend and denoising_steps=4. Metrics are on unnormalized actions.

Metric Value
Average MSE 0.04266
Median MSE 0.03278
Std MSE 0.02492
Max MSE 0.10053
Fraction ≤ 0.05 80.0%
Fraction ≤ 0.075 80.0%
Fraction ≤ 0.10 90.0%

Usage

from gr00t.experiment.data_config import load_data_config
from gr00t.model.policy import Gr00tPolicy

ckpt = 'Tacoin/GR00T-N1.5-3B-LIBERO-SPATIAL'
data_config = load_data_config('libero_gr00t')
policy = Gr00tPolicy(
    model_path=ckpt,
    modality_config=data_config.modality_config(),
    modality_transform=data_config.transform(),
    embodiment_tag='new_embodiment',
    denoising_steps=4,
)

Pass a LeRobot observation dict to policy.get_action(...) to obtain the 16-step plan.

Files

Path Description
config.json Transformer config for the action head.
model-0000x-of-00002.safetensors Sharded weights.
model.safetensors.index.json Weight shard index.
experiment_cfg/metadata.json Dataset statistics for normalization.
optimizer.pt, scheduler.pt, rng_state.pth Optimizer state for resuming.
trainer_state.json Trainer snapshot (loss curves, etc.).

License

Apache-2.0. Please credit NVIDIA Isaac GR00T and LIBERO when using this checkpoint.

Downloads last month
15
Safetensors
Model size
3B params
Tensor type
F32
·
BF16
·
Video Preview
loading

Model tree for Tacoin/GR00T-N1.5-3B-LIBERO-SPATIAL

Finetuned
(29)
this model