{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79b627683980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1720259243567195411, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGCjcLronrqMAWyUTegDjAF0lEdAlXsoXwb2lHV9lChoBkdAYaY2phnanWgHTegDaAhHQJV8oc6vJRx1fZQoaAZHQGQBCeVcD8toB03oA2gIR0CVfUvLowEhdX2UKGgGR0BEvsTN+so2aAdL+mgIR0CVgxeQuEmIdX2UKGgGR0BlTlEXtShraAdN6ANoCEdAlYof4Irvs3V9lChoBkdAZQvcdHUc42gHTegDaAhHQJWOxzr/sE91fZQoaAZHQGNYbb+Lm6poB03oA2gIR0CVlThM8HObdX2UKGgGR0BiljuBtk4FaAdN6ANoCEdAlZnjBRAKOXV9lChoBkdAYqXJgb6xgWgHTegDaAhHQJWbX3N9ph51fZQoaAZHQGRo5le4TbpoB03oA2gIR0CVncnZCfHxdX2UKGgGR0BmF94X40uUaAdN6ANoCEdAlZ+GqPwNLHV9lChoBkdAZJ/C6Ymb9mgHTegDaAhHQJW/BoduHet1fZQoaAZHQGZdjbSJCSloB03oA2gIR0CVwROvdM0xdX2UKGgGR0BijTO7g88taAdN6ANoCEdAlcIAPy08eXV9lChoBkdAZQBtdAxBV2gHTegDaAhHQJXDJGtp22Z1fZQoaAZHQGSvNi6QNkRoB03oA2gIR0CVyaCL/CIldX2UKGgGR0Bef9nPE87qaAdN6ANoCEdAlcrY5Lh73XV9lChoBkdAYKwkAPuogmgHTegDaAhHQJXMYz/IbOx1fZQoaAZHQGS0tMfzSThoB03oA2gIR0CVzRKzAvcrdX2UKGgGR0Bip0nb7CSBaAdN6ANoCEdAldHF/pdKNHV9lChoBkdAY+e08/2TPmgHTegDaAhHQJXWvgiu+yt1fZQoaAZHQGMqb0voNd9oB03oA2gIR0CV2qAtFrmAdX2UKGgGR0BDw+zUqhDgaAdL72gIR0CV3iNQCSzPdX2UKGgGR0Blt0ZiuuA7aAdN6ANoCEdAleCefZmI03V9lChoBkdAZcDLJ0W/J2gHTegDaAhHQJXkonMMZxd1fZQoaAZHQGSxqH446wNoB03oA2gIR0CV5e/7iyY5dX2UKGgGR0Blg7upjtojaAdN6ANoCEdAlei0XgtOEnV9lChoBkdAYcAawUxmCmgHTegDaAhHQJXqs6Lfk3l1fZQoaAZHQGUrJul41P5oB03oA2gIR0CWB8dy1eBydX2UKGgGR0BkPERtgrpaaAdN6ANoCEdAlgmOX/o7m3V9lChoBkdAZVY1x82Ji2gHTegDaAhHQJYKZ+QU5+91fZQoaAZHQGJwFfzBhx5oB03oA2gIR0CWC3XmvGIbdX2UKGgGR0BkFrH0btJGaAdN6ANoCEdAlhGGtdRiw3V9lChoBkdAYrPTPSlWO2gHTegDaAhHQJYSvzxwyZd1fZQoaAZHQGLJYXoC+11oB03oA2gIR0CWFD5B1LamdX2UKGgGR0BkVPWBjFyaaAdN6ANoCEdAlhTxwQ176nV9lChoBkdAZY03xWkrPWgHTegDaAhHQJYiovFm4Al1fZQoaAZHQGTM8oYvWYpoB03oA2gIR0CWJyZOzposdX2UKGgGR0BkdjCN0eU7aAdN6ANoCEdAlisN5yEL6XV9lChoBkdAZIMMCtA9m2gHTegDaAhHQJYtsjQiRnx1fZQoaAZHQGUup/wy6+ZoB03oA2gIR0CWMgFtKqXGdX2UKGgGR0BjQ9P557gLaAdN6ANoCEdAljNpL/S6UnV9lChoBkdAWniVHFxXGWgHTegDaAhHQJY11nYg7o11fZQoaAZHQGJjjOTq0MRoB03oA2gIR0CWN3nOjZctdX2UKGgGR0BxLBrYXfqHaAdNvwFoCEdAljvRgVoHs3V9lChoBkdAXSp4jbBXS2gHTegDaAhHQJZWQfnwG4Z1fZQoaAZHQGFaxq46Oo5oB03oA2gIR0CWWCIbwSamdX2UKGgGR0BnCqe9SMtLaAdN6ANoCEdAllj9q1w5vXV9lChoBkdAYo6SteUpu2gHTegDaAhHQJZaEvDgqEx1fZQoaAZHQHEZ/ub7TDxoB03vAWgIR0CWWp8W9DhMdX2UKGgGR0Bi8y3XqZ+haAdN6ANoCEdAll9dTDO1OXV9lChoBkdAZwzah6By0mgHTegDaAhHQJZgY/iYLLJ1fZQoaAZHQGa9EOy3TeBoB03oA2gIR0CWYaDoQnQZdX2UKGgGR0Bhn/nGKhtcaAdN6ANoCEdAlmI2V/tpmHV9lChoBkdAYcHSydFvymgHTegDaAhHQJZvzYqXnhd1fZQoaAZHQGF1R7RfF75oB03oA2gIR0CWdfUxmCiAdX2UKGgGR0BkspyGSIP9aAdN6ANoCEdAlnpDjR2KVXV9lChoBkdAZtlrvb48EGgHTegDaAhHQJZ7oS26TW51fZQoaAZHQGQL6BqbjLloB03oA2gIR0CWfqVM23rldX2UKGgGR0BnZOz6ab4KaAdN6ANoCEdAloCqgqVhTnV9lChoBkdAYQ7pMYdhiWgHTegDaAhHQJaF9tgrpaB1fZQoaAZHQGeAN0/4ZdhoB03oA2gIR0CWnVsDW9UTdX2UKGgGR0BmyVga3qiXaAdN6ANoCEdAlp8OeJ53T3V9lChoBkdAZpGd/8VHnWgHTegDaAhHQJafxf2K2rp1fZQoaAZHQGNy60x/NJRoB03oA2gIR0CWoLe9i+cpdX2UKGgGR0BmCEBdUsFuaAdN6ANoCEdAlqE1TefqYHV9lChoBkdAcWCr0J4SpWgHTQwCaAhHQJakpLXcxj91fZQoaAZHQGkBN5+pfhNoB03oA2gIR0CWpdpvgm7bdX2UKGgGR0Bj0wU8FINFaAdN6ANoCEdAlqbiFTNt7HV9lChoBkdAYob2s7uDz2gHTegDaAhHQJaoNP1tfol1fZQoaAZHQF+fzySV4X5oB03oA2gIR0CWqM4IrvsrdX2UKGgGR0A+/ThHbypaaAdL4WgIR0CWquVrylN2dX2UKGgGR0BwWn655JK8aAdNUQFoCEdAlq8k5EMLGHV9lChoBkdAPFBkVeruIGgHS99oCEdAlrGj/hl183V9lChoBkdAZK0piI+GGmgHTegDaAhHQJa4AU/OdG11fZQoaAZHQGTqECvHLidoB03oA2gIR0CWwt58Sf16dX2UKGgGR0BesKoMrmQsaAdN6ANoCEdAlsRJ8OTaCnV9lChoBkdATZxAprk8zWgHS/JoCEdAlsWhUrCm/HV9lChoBkdAaGfLmITGpGgHTegDaAhHQJbGqrn1WbR1fZQoaAZHQGV1B5gPVd5oB03oA2gIR0CWyEtGd7OWdX2UKGgGR0BjQWK4x1xLaAdN6ANoCEdAlsxI4Qz1snV9lChoBkdAYXItjCpFTmgHTegDaAhHQJbR1IXj2jB1fZQoaAZHQGRaJI1+AmRoB03oA2gIR0CW5gldC3PSdX2UKGgGR0BlfZyjpLVXaAdN6ANoCEdAlulLlvIfbXV9lChoBkdAYqj5MURFqmgHTegDaAhHQJbuWcOLBKt1fZQoaAZHQGT6RwZOzppoB03oA2gIR0CW75HAAQxvdX2UKGgGR0Bn6DuhK15TaAdN6ANoCEdAlvII2S+xnnV9lChoBkdAZWhhDw6QvGgHTegDaAhHQJbyrb48EFJ1fZQoaAZHQGQcmSZBsyloB03oA2gIR0CW9QInjQzDdX2UKGgGR0BDzhR64UeuaAdLw2gIR0CW+QDifg76dX2UKGgGR0BlYRacI7eVaAdN6ANoCEdAlvmBl18stnV9lChoBkdAZBj8NQTEi2gHTegDaAhHQJb7ebExZdR1fZQoaAZHQHKZWVqveP9oB03sAWgIR0CXAFspXp4bdX2UKGgGR0BiAovDgqEwaAdN6ANoCEdAlwpHBxgiNnV9lChoBkdAZhAHj6vaDmgHTegDaAhHQJcLszi0fHR1fZQoaAZHQGJwRlpXZGtoB03oA2gIR0CXDQ3PiT+vdX2UKGgGR0Bjud98Z1mraAdN6ANoCEdAlw4L7oB7u3V9lChoBkdAZ/JEUCaJAWgHTegDaAhHQJcPj94u9OB1fZQoaAZHQGRCdTP0I1NoB03oA2gIR0CXE11schkidX2UKGgGR0BhnP3ta6jGaAdN6ANoCEdAlxm3g5zYEnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}