File size: 939 Bytes
00312f8 c9211cb a3e4b9a c9211cb b794013 c9211cb b794013 c9211cb b794013 c9211cb b794013 d60c294 c9211cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
---
tags:
- object-detection
---
## Model description
detr-doc-table-detection is a model trained to detect both **Bordered** and **Borderless** tables in documents, based on [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
## Training data
The model was trained on ICDAR2019 Table Dataset
### How to use
```python
from transformers import DetrFeatureExtractor, DetrForObjectDetection
from PIL import Image
image = Image.open("Image path")
feature_extractor = DetrFeatureExtractor.from_pretrained('TahaDouaji/detr-doc-table-detection')
model = DetrForObjectDetection.from_pretrained('TahaDouaji/detr-doc-table-detection')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
# convert outputs (bounding boxes and class logits) to COCO API
target_sizes = torch.tensor([image.size[::-1]])
results = feature_extractor.post_process(outputs, target_sizes=target_sizes)[0]
``` |