File size: 1,390 Bytes
00312f8 c9211cb a3e4b9a c9211cb e05068a c9211cb e05068a b794013 e05068a b794013 e05068a b794013 e05068a c9211cb b794013 d60c294 e05068a d60c294 e05068a c9211cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
---
tags:
- object-detection
---
## Model description
detr-doc-table-detection is a model trained to detect both **Bordered** and **Borderless** tables in documents, based on [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
## Training data
The model was trained on ICDAR2019 Table Dataset
### How to use
```python
from transformers import DetrImageProcessor, DetrForObjectDetection
import torch
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = DetrImageProcessor.from_pretrained("TahaDouaji/detr-doc-table-detection")
model = DetrForObjectDetection.from_pretrained("TahaDouaji/detr-doc-table-detection")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
# convert outputs (bounding boxes and class logits) to COCO API
# let's only keep detections with score > 0.9
target_sizes = torch.tensor([image.size[::-1]])
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = [round(i, 2) for i in box.tolist()]
print(
f"Detected {model.config.id2label[label.item()]} with confidence "
f"{round(score.item(), 3)} at location {box}"
)
``` |