--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - vision - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: CrackDetectionLowRes results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9940476190476191 --- # CrackDetectionLowRes This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0183 - Accuracy: 0.9940 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 0.0126 | 1.0 | 992 | 0.9879 | 0.0344 | | 0.0788 | 2.0 | 1904 | 0.9933 | 0.0220 | | 0.1336 | 3.0 | 2856 | 0.9933 | 0.0222 | | 0.0066 | 4.0 | 3808 | 0.9933 | 0.0190 | | 0.0528 | 5.0 | 4760 | 0.9940 | 0.0183 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cpu - Datasets 2.13.1 - Tokenizers 0.13.3