TalesLF commited on
Commit
6a27fb9
·
1 Parent(s): 6510d65

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2226.39 +/- 25.63
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43a02b1477c9bc6e139db8d70eaafd88ed355ee963096f00c893e7b2445e2640
3
+ size 129248
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f24362a5480>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f24362a5510>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f24362a55a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24362a5630>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f24362a56c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f24362a5750>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f24362a57e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24362a5870>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f24362a5900>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24362a5990>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24362a5a20>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24362a5ab0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f24362ac100>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1688868988305552670,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABs5dL4zjli9G6boPrfSjj8lwWC/On2iP5aIFr6YJwi/YSc0vxWItz+X5g4/hvDYPnx3Qr9hBCU/zegkP49s27mY0Yw/52DNvp3hxL7IfgG/B6LvviDlmz9XXao/UrFDvPtTLD/MWrM+aL41P6BOqz9bias/m+C0vlneND7NsQs/4Xhdv4CuRr9klVy/6CFTv+nZij+O6mK/CT+gvP/NijuFeci/Few1v8SxiT4yRYi/CzC2v88dvz4b/La+TDInPwS+PL8xi6u/3IIlPsMbCr/7Uyw/zFqzPmi+NT88SD+/SyRUPwvHnrxuGvY+UoKTPzglm7/rNEY/lklMvw+NTr+feDA/vmIgP4YtGz7JZS2/CKZ+v5qkCr7A+SQ/6a8QO4YlcL9uTm+/uHbIvqSG6T4vMbu+Nn9aPp5ngD95j5+/+1MsP8xasz5ovjU/PEg/v+8Qyz5F6t++6pmpPYtbeL0E+k+/cAopwCmM37526bo+MMyfvRiLjL+r8Ta/P9Wkv5C607+oYPY+AmUmPdu2M72ppRu/uGINQHoqfb7/ocU+IiGWv/H2cD9a7qk7rc/HPCImvr/MWrM+O0y0vzxIP7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADA7V81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAq7cUPQAAAAAWHuq/AAAAALR42D0AAAAA9JXvPwAAAACm5Va9AAAAAE7S2D8AAAAAaxWTvAAAAACoAuW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZd5ltgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDKp+D0AAAAAvAj+vwAAAADGbKa9AAAAAFfD5T8AAAAAYXEHPgAAAAC/2ABAAAAAAED5mT0AAAAA4rn5vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACpD77YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAAF/w9AAAAACbv3r8AAAAAvc+KvAAAAABJK/g/AAAAAN1t+70AAAAAa8H+PwAAAACCcTE9AAAAAC2p478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZoJa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1OX5PQAAAACGSgHAAAAAAJcIO70AAAAAO7rpPwAAAAC60g49AAAAAIYM8T8AAAAAR/yEPQAAAAAa6dq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKF0cPcSGrWMAWyUTegDjAF0lEdAqxAO78Nx2nV9lChoBkdAoDSied07sGgHTegDaAhHQKsQIiCaqjt1fZQoaAZHQKIM3tpEhJRoB03oA2gIR0CrFTX7cfvGdX2UKGgGR0CiAbOa4MF2aAdN6ANoCEdAqxhg6fapP3V9lChoBkdAoYwG4qgAZWgHTegDaAhHQKscIgK4QSV1fZQoaAZHQKIvvQzDXOJoB03oA2gIR0CrHDT+ee4DdX2UKGgGR0ChccP114gSaAdN6ANoCEdAqyLc/B3zMHV9lChoBkdAoWuZntfG/GgHTegDaAhHQKsnztMwlB11fZQoaAZHQKI0FN1QqI9oB03oA2gIR0CrLCy5qdpZdX2UKGgGR0ChYljHwPRRaAdN6ANoCEdAqyw/rpqynnV9lChoBkdAob0nbItDlmgHTegDaAhHQKsxd5hScb11fZQoaAZHQKEXdbj94u9oB03oA2gIR0CrNJgwXZXddX2UKGgGR0CgL3iRfWtmaAdN6ANoCEdAqzhYiJO32HV9lChoBkdAoVg9L127nWgHTegDaAhHQKs4auQp4KR1fZQoaAZHQKD1+B+4LCxoB03oA2gIR0CrPZecx0uEdX2UKGgGR0CgQaXVkMCtaAdN6ANoCEdAq0I/MOf/WHV9lChoBkdAogq1FUhmoWgHTegDaAhHQKtIPtOVPep1fZQoaAZHQKCEpWI42jxoB03oA2gIR0CrSFts3yZsdX2UKGgGR0CgwaHLidauaAdN6ANoCEdAq02QDYAbQ3V9lChoBkdAoARyvX9R8GgHTegDaAhHQKtQr6HCXQd1fZQoaAZHQKCL0P+XJHRoB03oA2gIR0CrVI5UtI07dX2UKGgGR0Cfr0wDNhVmaAdN6ANoCEdAq1Shu4wyqXV9lChoBkdAobjYjY7JXGgHTegDaAhHQKtZzobGWD91fZQoaAZHQKFh49Zid8RoB03oA2gIR0CrXXCgCfYjdX2UKGgGR0ChgJv6j323aAdN6ANoCEdAq2NBNmDlHXV9lChoBkdAoS6dCNS62GgHTegDaAhHQKtjXluFYdR1fZQoaAZHQJ+o+2jO9nNoB03oA2gIR0CrajuG0u14dX2UKGgGR0CeQ2M6BAfMaAdN6ANoCEdAq21gVqN6xHV9lChoBkdAn6Cny/bj+GgHTegDaAhHQKtxLELpiZx1fZQoaAZHQJ4N7E2pAD9oB03oA2gIR0CrcT7obGWEdX2UKGgGR0CgWxhoVVPvaAdN6ANoCEdAq3ZedmQKbHV9lChoBkdAoAKuPtD2J2gHTegDaAhHQKt5oZy+6Ah1fZQoaAZHQJy7bRUm2LJoB03oA2gIR0CrfjiT+vQodX2UKGgGR0Cgs41anrIHaAdN6ANoCEdAq35bQeFL4HV9lChoBkdAoQ1HfIjnm2gHTegDaAhHQKuGPz5oGpx1fZQoaAZHQKBuqMKCxu9oB03oA2gIR0CricQm/nGLdX2UKGgGR0CexbJq7AclaAdN6ANoCEdAq42jxCpm3HV9lChoBkdAoKZwfZElV2gHTegDaAhHQKuNumdAgPp1fZQoaAZHQKB2VU9ZA6doB03oA2gIR0CrktMuez2OdX2UKGgGR0Cgn6ZwwTM8aAdN6ANoCEdAq5YFP3ztkXV9lChoBkdAoFkaZ6Uqx2gHTegDaAhHQKuZ5zNliBp1fZQoaAZHQKDbbSy+pOxoB03oA2gIR0CrmfojW07bdX2UKGgGR0Cgi1Du8brDaAdN6ANoCEdAq6D2C/XXiHV9lChoBkdAoVNC8nNPg2gHTegDaAhHQKul61ZTyax1fZQoaAZHQKGwLYHxBmhoB03oA2gIR0CrqeXlS0jUdX2UKGgGR0Cgy9hN21UmaAdN6ANoCEdAq6n4xJul43V9lChoBkdAoJhjxy4nW2gHTegDaAhHQKuvDCUornV1fZQoaAZHQKFLMRRuTA5oB03oA2gIR0CrskcjzI3jdX2UKGgGR0CizDA+Y+jeaAdN6ANoCEdAq7Yhvo/zKHV9lChoBkdAoJ6Wr8zhxmgHTegDaAhHQKu2NHR1HON1fZQoaAZHQKLgoqFRHgBoB03oA2gIR0Cru6yDIzWPdX2UKGgGR0CjLtByjpLVaAdN6ANoCEdAq8Ba+JxecHV9lChoBkdAots1e0G/vmgHTegDaAhHQKvF/KMefZp1fZQoaAZHQKLLl2rXDm9oB03oA2gIR0CrxhCLl3hXdX2UKGgGR0Cixqo6bONYaAdN6ANoCEdAq8s3qxC6YnV9lChoBkdAokFbcAR02mgHTegDaAhHQKvOZ6eoUBZ1fZQoaAZHQKJ+PFfiPyVoB03oA2gIR0Cr0jXVsk6cdX2UKGgGR0CizS2pyZKGaAdN6ANoCEdAq9JIqCpWFXV9lChoBkdAowHZWgezU2gHTegDaAhHQKvXhYKYzBR1fZQoaAZHQKKphZPEbYNoB03oA2gIR0Cr3EIzeoDQdX2UKGgGR0CjLRL7fpEAaAdN6ANoCEdAq+I2OlwcYXV9lChoBkdAoteB77bcoGgHTegDaAhHQKviVWsijcp1fZQoaAZHQKM0bYLb5/NoB03oA2gIR0Cr6wB+4LCvdX2UKGgGR0Ci69BP0qYraAdN6ANoCEdAq+8goNNJv3V9lChoBkdAosXprvb48GgHTegDaAhHQKvy+Z9d/rl1fZQoaAZHQKKNxKODJ2doB03oA2gIR0Cr8wwla8pTdX2UKGgGR0Ci09AX2ugZaAdN6ANoCEdAq/gnf0mMO3V9lChoBkdAofcuWSlnAmgHTegDaAhHQKv7UstCiRJ1fZQoaAZHQKKJlIn0CihoB03oA2gIR0Cr/yFuFYdRdX2UKGgGR0ChqrqW9lEraAdN6ANoCEdAq/8z6zmfXnV9lChoBkdAorn5KnNxEWgHTegDaAhHQKwFo3yZrpJ1fZQoaAZHQKG162Xsw+NoB03oA2gIR0CsCrGGVRk3dX2UKGgGR0Chxz6pHZsbaAdN6ANoCEdArA9O25QP7XV9lChoBkdAoVj7jcVQAWgHTegDaAhHQKwPZBuXNTt1fZQoaAZHQKDbG1Q66rhoB03oA2gIR0CsFJjIikftdX2UKGgGR0CgZj6iblRxaAdN6ANoCEdArBfFEofCAXV9lChoBkdAoD+m4I8hcWgHTegDaAhHQKwbrgRbr1N1fZQoaAZHQJ/BDZpSJj5oB03oA2gIR0CsG8LiMo+fdX2UKGgGR0CgrGpm/WUbaAdN6ANoCEdArCEYhbGFSXV9lChoBkdAoUdQNy5qd2gHTegDaAhHQKwl0DDCP6t1fZQoaAZHQKHVF3Ux20RoB03oA2gIR0CsK9qjafz0dX2UKGgGR0ChXjbaAWi2aAdN6ANoCEdArCv4umJm/XV9lChoBkdAof1bPKMefmgHTegDaAhHQKwxHAmAskJ1fZQoaAZHQKISAXoC+11oB03oA2gIR0CsNDYPoV2zdX2UKGgGR0ChktYfwI+oaAdN6ANoCEdArDgPCqIacnV9lChoBkdAoYsDMvAXVWgHTegDaAhHQKw4IkleF+N1fZQoaAZHQKDtTr+HaexoB03oA2gIR0CsPSUO3DvWdX2UKGgGR0ChrJ/Ot4iYaAdN6ANoCEdArEBrz3AVPHV9lChoBkdAoLulaEBbOmgHTegDaAhHQKxGArOJLuh1fZQoaAZHQKE9HhUipvRoB03oA2gIR0CsRh8Udq+KdX2UKGgGR0ChGVWxY7q6aAdN6ANoCEdArE0cQoTfznV9lChoBkdAoaDkcKgIyGgHTegDaAhHQKxQQit7rs11fZQoaAZHQKEpuywfQrtoB03oA2gIR0CsVA4PoV2zdX2UKGgGR0CiAAFVDKHPaAdN6ANoCEdArFQil54W13V9lChoBkdAolfRttQ9BGgHTegDaAhHQKxZRJul41R1fZQoaAZHQKKnImTkhidoB03oA2gIR0CsXGH6l+EzdX2UKGgGR0CiNWE12q1gaAdN6ANoCEdArGCcAggX/HV9lChoBkdAoZmXFirksGgHTegDaAhHQKxgtj5Kvmp1fZQoaAZHQKDDfw2l2vBoB03oA2gIR0CsaIQqZtvXdX2UKGgGR0Cg1gDoQnQZaAdN6ANoCEdArGxyfvnbI3VlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5312cf7758b362a9ba99db965831467da11870ea7c1213c08bec50799c88a772
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca735018edec1a8cf83be5887f0be27e02c377e8d5dd1e6f094e80a342ca88cf
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f24362a5480>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f24362a5510>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f24362a55a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24362a5630>", "_build": "<function ActorCriticPolicy._build at 0x7f24362a56c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f24362a5750>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f24362a57e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24362a5870>", "_predict": "<function ActorCriticPolicy._predict at 0x7f24362a5900>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24362a5990>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24362a5a20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24362a5ab0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f24362ac100>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688868988305552670, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABs5dL4zjli9G6boPrfSjj8lwWC/On2iP5aIFr6YJwi/YSc0vxWItz+X5g4/hvDYPnx3Qr9hBCU/zegkP49s27mY0Yw/52DNvp3hxL7IfgG/B6LvviDlmz9XXao/UrFDvPtTLD/MWrM+aL41P6BOqz9bias/m+C0vlneND7NsQs/4Xhdv4CuRr9klVy/6CFTv+nZij+O6mK/CT+gvP/NijuFeci/Few1v8SxiT4yRYi/CzC2v88dvz4b/La+TDInPwS+PL8xi6u/3IIlPsMbCr/7Uyw/zFqzPmi+NT88SD+/SyRUPwvHnrxuGvY+UoKTPzglm7/rNEY/lklMvw+NTr+feDA/vmIgP4YtGz7JZS2/CKZ+v5qkCr7A+SQ/6a8QO4YlcL9uTm+/uHbIvqSG6T4vMbu+Nn9aPp5ngD95j5+/+1MsP8xasz5ovjU/PEg/v+8Qyz5F6t++6pmpPYtbeL0E+k+/cAopwCmM37526bo+MMyfvRiLjL+r8Ta/P9Wkv5C607+oYPY+AmUmPdu2M72ppRu/uGINQHoqfb7/ocU+IiGWv/H2cD9a7qk7rc/HPCImvr/MWrM+O0y0vzxIP7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADA7V81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAq7cUPQAAAAAWHuq/AAAAALR42D0AAAAA9JXvPwAAAACm5Va9AAAAAE7S2D8AAAAAaxWTvAAAAACoAuW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZd5ltgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDKp+D0AAAAAvAj+vwAAAADGbKa9AAAAAFfD5T8AAAAAYXEHPgAAAAC/2ABAAAAAAED5mT0AAAAA4rn5vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACpD77YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAAF/w9AAAAACbv3r8AAAAAvc+KvAAAAABJK/g/AAAAAN1t+70AAAAAa8H+PwAAAACCcTE9AAAAAC2p478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZoJa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1OX5PQAAAACGSgHAAAAAAJcIO70AAAAAO7rpPwAAAAC60g49AAAAAIYM8T8AAAAAR/yEPQAAAAAa6dq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKF0cPcSGrWMAWyUTegDjAF0lEdAqxAO78Nx2nV9lChoBkdAoDSied07sGgHTegDaAhHQKsQIiCaqjt1fZQoaAZHQKIM3tpEhJRoB03oA2gIR0CrFTX7cfvGdX2UKGgGR0CiAbOa4MF2aAdN6ANoCEdAqxhg6fapP3V9lChoBkdAoYwG4qgAZWgHTegDaAhHQKscIgK4QSV1fZQoaAZHQKIvvQzDXOJoB03oA2gIR0CrHDT+ee4DdX2UKGgGR0ChccP114gSaAdN6ANoCEdAqyLc/B3zMHV9lChoBkdAoWuZntfG/GgHTegDaAhHQKsnztMwlB11fZQoaAZHQKI0FN1QqI9oB03oA2gIR0CrLCy5qdpZdX2UKGgGR0ChYljHwPRRaAdN6ANoCEdAqyw/rpqynnV9lChoBkdAob0nbItDlmgHTegDaAhHQKsxd5hScb11fZQoaAZHQKEXdbj94u9oB03oA2gIR0CrNJgwXZXddX2UKGgGR0CgL3iRfWtmaAdN6ANoCEdAqzhYiJO32HV9lChoBkdAoVg9L127nWgHTegDaAhHQKs4auQp4KR1fZQoaAZHQKD1+B+4LCxoB03oA2gIR0CrPZecx0uEdX2UKGgGR0CgQaXVkMCtaAdN6ANoCEdAq0I/MOf/WHV9lChoBkdAogq1FUhmoWgHTegDaAhHQKtIPtOVPep1fZQoaAZHQKCEpWI42jxoB03oA2gIR0CrSFts3yZsdX2UKGgGR0CgwaHLidauaAdN6ANoCEdAq02QDYAbQ3V9lChoBkdAoARyvX9R8GgHTegDaAhHQKtQr6HCXQd1fZQoaAZHQKCL0P+XJHRoB03oA2gIR0CrVI5UtI07dX2UKGgGR0Cfr0wDNhVmaAdN6ANoCEdAq1Shu4wyqXV9lChoBkdAobjYjY7JXGgHTegDaAhHQKtZzobGWD91fZQoaAZHQKFh49Zid8RoB03oA2gIR0CrXXCgCfYjdX2UKGgGR0ChgJv6j323aAdN6ANoCEdAq2NBNmDlHXV9lChoBkdAoS6dCNS62GgHTegDaAhHQKtjXluFYdR1fZQoaAZHQJ+o+2jO9nNoB03oA2gIR0CrajuG0u14dX2UKGgGR0CeQ2M6BAfMaAdN6ANoCEdAq21gVqN6xHV9lChoBkdAn6Cny/bj+GgHTegDaAhHQKtxLELpiZx1fZQoaAZHQJ4N7E2pAD9oB03oA2gIR0CrcT7obGWEdX2UKGgGR0CgWxhoVVPvaAdN6ANoCEdAq3ZedmQKbHV9lChoBkdAoAKuPtD2J2gHTegDaAhHQKt5oZy+6Ah1fZQoaAZHQJy7bRUm2LJoB03oA2gIR0CrfjiT+vQodX2UKGgGR0Cgs41anrIHaAdN6ANoCEdAq35bQeFL4HV9lChoBkdAoQ1HfIjnm2gHTegDaAhHQKuGPz5oGpx1fZQoaAZHQKBuqMKCxu9oB03oA2gIR0CricQm/nGLdX2UKGgGR0CexbJq7AclaAdN6ANoCEdAq42jxCpm3HV9lChoBkdAoKZwfZElV2gHTegDaAhHQKuNumdAgPp1fZQoaAZHQKB2VU9ZA6doB03oA2gIR0CrktMuez2OdX2UKGgGR0Cgn6ZwwTM8aAdN6ANoCEdAq5YFP3ztkXV9lChoBkdAoFkaZ6Uqx2gHTegDaAhHQKuZ5zNliBp1fZQoaAZHQKDbbSy+pOxoB03oA2gIR0CrmfojW07bdX2UKGgGR0Cgi1Du8brDaAdN6ANoCEdAq6D2C/XXiHV9lChoBkdAoVNC8nNPg2gHTegDaAhHQKul61ZTyax1fZQoaAZHQKGwLYHxBmhoB03oA2gIR0CrqeXlS0jUdX2UKGgGR0Cgy9hN21UmaAdN6ANoCEdAq6n4xJul43V9lChoBkdAoJhjxy4nW2gHTegDaAhHQKuvDCUornV1fZQoaAZHQKFLMRRuTA5oB03oA2gIR0CrskcjzI3jdX2UKGgGR0CizDA+Y+jeaAdN6ANoCEdAq7Yhvo/zKHV9lChoBkdAoJ6Wr8zhxmgHTegDaAhHQKu2NHR1HON1fZQoaAZHQKLgoqFRHgBoB03oA2gIR0Cru6yDIzWPdX2UKGgGR0CjLtByjpLVaAdN6ANoCEdAq8Ba+JxecHV9lChoBkdAots1e0G/vmgHTegDaAhHQKvF/KMefZp1fZQoaAZHQKLLl2rXDm9oB03oA2gIR0CrxhCLl3hXdX2UKGgGR0Cixqo6bONYaAdN6ANoCEdAq8s3qxC6YnV9lChoBkdAokFbcAR02mgHTegDaAhHQKvOZ6eoUBZ1fZQoaAZHQKJ+PFfiPyVoB03oA2gIR0Cr0jXVsk6cdX2UKGgGR0CizS2pyZKGaAdN6ANoCEdAq9JIqCpWFXV9lChoBkdAowHZWgezU2gHTegDaAhHQKvXhYKYzBR1fZQoaAZHQKKphZPEbYNoB03oA2gIR0Cr3EIzeoDQdX2UKGgGR0CjLRL7fpEAaAdN6ANoCEdAq+I2OlwcYXV9lChoBkdAoteB77bcoGgHTegDaAhHQKviVWsijcp1fZQoaAZHQKM0bYLb5/NoB03oA2gIR0Cr6wB+4LCvdX2UKGgGR0Ci69BP0qYraAdN6ANoCEdAq+8goNNJv3V9lChoBkdAosXprvb48GgHTegDaAhHQKvy+Z9d/rl1fZQoaAZHQKKNxKODJ2doB03oA2gIR0Cr8wwla8pTdX2UKGgGR0Ci09AX2ugZaAdN6ANoCEdAq/gnf0mMO3V9lChoBkdAofcuWSlnAmgHTegDaAhHQKv7UstCiRJ1fZQoaAZHQKKJlIn0CihoB03oA2gIR0Cr/yFuFYdRdX2UKGgGR0ChqrqW9lEraAdN6ANoCEdAq/8z6zmfXnV9lChoBkdAorn5KnNxEWgHTegDaAhHQKwFo3yZrpJ1fZQoaAZHQKG162Xsw+NoB03oA2gIR0CsCrGGVRk3dX2UKGgGR0Chxz6pHZsbaAdN6ANoCEdArA9O25QP7XV9lChoBkdAoVj7jcVQAWgHTegDaAhHQKwPZBuXNTt1fZQoaAZHQKDbG1Q66rhoB03oA2gIR0CsFJjIikftdX2UKGgGR0CgZj6iblRxaAdN6ANoCEdArBfFEofCAXV9lChoBkdAoD+m4I8hcWgHTegDaAhHQKwbrgRbr1N1fZQoaAZHQJ/BDZpSJj5oB03oA2gIR0CsG8LiMo+fdX2UKGgGR0CgrGpm/WUbaAdN6ANoCEdArCEYhbGFSXV9lChoBkdAoUdQNy5qd2gHTegDaAhHQKwl0DDCP6t1fZQoaAZHQKHVF3Ux20RoB03oA2gIR0CsK9qjafz0dX2UKGgGR0ChXjbaAWi2aAdN6ANoCEdArCv4umJm/XV9lChoBkdAof1bPKMefmgHTegDaAhHQKwxHAmAskJ1fZQoaAZHQKISAXoC+11oB03oA2gIR0CsNDYPoV2zdX2UKGgGR0ChktYfwI+oaAdN6ANoCEdArDgPCqIacnV9lChoBkdAoYsDMvAXVWgHTegDaAhHQKw4IkleF+N1fZQoaAZHQKDtTr+HaexoB03oA2gIR0CsPSUO3DvWdX2UKGgGR0ChrJ/Ot4iYaAdN6ANoCEdArEBrz3AVPHV9lChoBkdAoLulaEBbOmgHTegDaAhHQKxGArOJLuh1fZQoaAZHQKE9HhUipvRoB03oA2gIR0CsRh8Udq+KdX2UKGgGR0ChGVWxY7q6aAdN6ANoCEdArE0cQoTfznV9lChoBkdAoaDkcKgIyGgHTegDaAhHQKxQQit7rs11fZQoaAZHQKEpuywfQrtoB03oA2gIR0CsVA4PoV2zdX2UKGgGR0CiAAFVDKHPaAdN6ANoCEdArFQil54W13V9lChoBkdAolfRttQ9BGgHTegDaAhHQKxZRJul41R1fZQoaAZHQKKnImTkhidoB03oA2gIR0CsXGH6l+EzdX2UKGgGR0CiNWE12q1gaAdN6ANoCEdArGCcAggX/HV9lChoBkdAoZmXFirksGgHTegDaAhHQKxgtj5Kvmp1fZQoaAZHQKDDfw2l2vBoB03oA2gIR0CsaIQqZtvXdX2UKGgGR0Cg1gDoQnQZaAdN6ANoCEdArGxyfvnbI3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de9cf4d2b45bfb36d6d64c37539ae52d4e040eac4ccc880486052fda3615ff13
3
+ size 1261332
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2226.386401712184, "std_reward": 25.634995502037725, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-09T03:17:21.422215"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6c92de4f9e4e1a360a4ccbe0e262053150e119facd4925be1c27ab62462a231
3
+ size 2176