Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +97 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.66 +/- 0.21
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc0ff5fa88db57b20e069551c16a12b6f08ee42da46e02d231d469c93df0492b
|
3 |
+
size 109329
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe4d6755cf0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe4d675b640>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
+
"optimizer_kwargs": {
|
19 |
+
"alpha": 0.99,
|
20 |
+
"eps": 1e-05,
|
21 |
+
"weight_decay": 0
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"num_timesteps": 1000000,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1688927755385024111,
|
30 |
+
"learning_rate": 0.00096,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArQ4BP+27Xbw9igs/rQ4BP+27Xbw9igs/rQ4BP+27Xbw9igs/rQ4BP+27Xbw9igs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAY5tjvTJdRr41Pn2/3ToZP7tzlL58tve+zoD7PT9yyT/gcy++w1q0P1q7Eb9JaZg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACtDgE/7btdvD2KCz+Dflg9TMciu5IuUT2tDgE/7btdvD2KCz+Dflg9TMciu5IuUT2tDgE/7btdvD2KCz+Dflg9TMciu5IuUT2tDgE/7btdvD2KCz+Dflg9TMciu5IuUT2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[ 0.5041302 -0.01353357 0.5450781 ]\n [ 0.5041302 -0.01353357 0.5450781 ]\n [ 0.5041302 -0.01353357 0.5450781 ]\n [ 0.5041302 -0.01353357 0.5450781 ]]",
|
40 |
+
"desired_goal": "[[-0.05556811 -0.19371489 -0.98923045]\n [ 0.59855443 -0.28994545 -0.48381412]\n [ 0.12280427 1.573799 -0.17134047]\n [ 1.4090198 -0.569265 1.190713 ]]",
|
41 |
+
"observation": "[[ 0.5041302 -0.01353357 0.5450781 0.05285503 -0.0024838 0.0510698 ]\n [ 0.5041302 -0.01353357 0.5450781 0.05285503 -0.0024838 0.0510698 ]\n [ 0.5041302 -0.01353357 0.5450781 0.05285503 -0.0024838 0.0510698 ]\n [ 0.5041302 -0.01353357 0.5450781 0.05285503 -0.0024838 0.0510698 ]]"
|
42 |
+
},
|
43 |
+
"_last_episode_starts": {
|
44 |
+
":type:": "<class 'numpy.ndarray'>",
|
45 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
46 |
+
},
|
47 |
+
"_last_original_obs": {
|
48 |
+
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAz2XZvPof4j3BIDc6rxDNveVc8T1m8bA9YmMPPXEyHT2G9VQ9fKYKvvdZnz22HSU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[-0.0265378 0.11041255 0.00069858]\n [-0.10012948 0.11785296 0.08639793]\n [ 0.03500689 0.03837818 0.05199196]\n [-0.13540071 0.07780831 0.16124615]]",
|
52 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
+
},
|
54 |
+
"_episode_num": 0,
|
55 |
+
"use_sde": true,
|
56 |
+
"sde_sample_freq": -1,
|
57 |
+
"_current_progress_remaining": 0.0,
|
58 |
+
"_stats_window_size": 100,
|
59 |
+
"ep_info_buffer": {
|
60 |
+
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5IbfTbfszL+UhpRSlIwBbJRLMowBdJRHQKslU/OdGy51fZQoaAZoCWgPQwjQ7Lq3IjH4v5SGlFKUaBVLMmgWR0CrJMCoS+QEdX2UKGgGaAloD0MIvyhBf6FH6r+UhpRSlGgVSzJoFkdAqyQ0GRmseXV9lChoBmgJaA9DCOCEQgQcAvG/lIaUUpRoFUsyaBZHQKsjsYP5HmR1fZQoaAZoCWgPQwgXvOgrSDPZv5SGlFKUaBVLMmgWR0CrJstnXd0rdX2UKGgGaAloD0MI9inHZHH//L+UhpRSlGgVSzJoFkdAqyY5Sk0rLHV9lChoBmgJaA9DCJJB7iJMEfe/lIaUUpRoFUsyaBZHQKslrX+2mYV1fZQoaAZoCWgPQwhAL9y5MNLgv5SGlFKUaBVLMmgWR0CrJSr61stTdX2UKGgGaAloD0MIBygNNQpJ77+UhpRSlGgVSzJoFkdAqyfs0aZQYXV9lChoBmgJaA9DCIOnkCv17PG/lIaUUpRoFUsyaBZHQKsnWbTc6/91fZQoaAZoCWgPQwjpZKn1fqPov5SGlFKUaBVLMmgWR0CrJs1BMSK4dX2UKGgGaAloD0MIjubIyi+D6r+UhpRSlGgVSzJoFkdAqyZKshgVoHV9lChoBmgJaA9DCMe6uI0G8Pa/lIaUUpRoFUsyaBZHQKspPJV81Gd1fZQoaAZoCWgPQwh87ZklAWr6v5SGlFKUaBVLMmgWR0CrKKrYGt6pdX2UKGgGaAloD0MIsD2zJEBN3r+UhpRSlGgVSzJoFkdAqygeTPjXF3V9lChoBmgJaA9DCL01sFWChfq/lIaUUpRoFUsyaBZHQKsnnFKkEcN1fZQoaAZoCWgPQwhPIOwUq4buv5SGlFKUaBVLMmgWR0CrKn+yAxzrdX2UKGgGaAloD0MIKA6g3/dv77+UhpRSlGgVSzJoFkdAqyntq+JxenV9lChoBmgJaA9DCFQ3F3/bE+O/lIaUUpRoFUsyaBZHQKspYUSIxg11fZQoaAZoCWgPQwhMwRpn05Hpv5SGlFKUaBVLMmgWR0CrKN6nrIHUdX2UKGgGaAloD0MI78ftl08W9L+UhpRSlGgVSzJoFkdAqyvGKZUkwHV9lChoBmgJaA9DCNdMvtnmxtO/lIaUUpRoFUsyaBZHQKsrMyVObiJ1fZQoaAZoCWgPQwhKCiyAKQPmv5SGlFKUaBVLMmgWR0CrKqanR9gGdX2UKGgGaAloD0MIiGh0B7Ez4r+UhpRSlGgVSzJoFkdAqyokKeCkGnV9lChoBmgJaA9DCCzX22YqRPW/lIaUUpRoFUsyaBZHQKstGm0mdAh1fZQoaAZoCWgPQwguyQG7mrzjv5SGlFKUaBVLMmgWR0CrLIdp7CzkdX2UKGgGaAloD0MI4UGz696K6b+UhpRSlGgVSzJoFkdAqyv7GR3eN3V9lChoBmgJaA9DCM3MzMzMTPC/lIaUUpRoFUsyaBZHQKsreK6WgOB1fZQoaAZoCWgPQwg5CaUvhBzlv5SGlFKUaBVLMmgWR0CrLlVnVXmvdX2UKGgGaAloD0MIqRPQRNhw+7+UhpRSlGgVSzJoFkdAqy3CQ/5cknV9lChoBmgJaA9DCD7shQK2g/O/lIaUUpRoFUsyaBZHQKstNenhsIp1fZQoaAZoCWgPQwgUJSGRtvH9v5SGlFKUaBVLMmgWR0CrLLN+b3GodX2UKGgGaAloD0MIcNBefTw09b+UhpRSlGgVSzJoFkdAqy/fiJfplnV9lChoBmgJaA9DCD90QX3LnOO/lIaUUpRoFUsyaBZHQKsvTavicXp1fZQoaAZoCWgPQwgYIqev5ysAwJSGlFKUaBVLMmgWR0CrLsNzS1E3dX2UKGgGaAloD0MIzm4tk+F477+UhpRSlGgVSzJoFkdAqy5Bi5NGmXV9lChoBmgJaA9DCBADXfsCeuW/lIaUUpRoFUsyaBZHQKsx7MsYl6Z1fZQoaAZoCWgPQwhX7C+7J0/wv5SGlFKUaBVLMmgWR0CrMVp5VwPzdX2UKGgGaAloD0MIHCWvzjGg6b+UhpRSlGgVSzJoFkdAqzDPBguyvHV9lChoBmgJaA9DCP31CgvuR/S/lIaUUpRoFUsyaBZHQKswTQFcIJJ1fZQoaAZoCWgPQwi9UpYhjjX0v5SGlFKUaBVLMmgWR0CrM8J3HJcPdX2UKGgGaAloD0MIPN154jkb8r+UhpRSlGgVSzJoFkdAqzMwIOYplXV9lChoBmgJaA9DCHjy6bEtg/G/lIaUUpRoFUsyaBZHQKsypEd/8VJ1fZQoaAZoCWgPQwixMhr5vOLxv5SGlFKUaBVLMmgWR0CrMiMx46fbdX2UKGgGaAloD0MIho+IKZFE67+UhpRSlGgVSzJoFkdAqzW9MyrPt3V9lChoBmgJaA9DCI+JlGbzOOy/lIaUUpRoFUsyaBZHQKs1KyYXwb51fZQoaAZoCWgPQwio/Gt55Xrwv5SGlFKUaBVLMmgWR0CrNJ+melKsdX2UKGgGaAloD0MIu0bLgR7q7b+UhpRSlGgVSzJoFkdAqzQeKuSwGHV9lChoBmgJaA9DCJ0v9l580cC/lIaUUpRoFUsyaBZHQKs3sQjlgc91fZQoaAZoCWgPQwhFoPoHkQzUv5SGlFKUaBVLMmgWR0CrNx8CHRCydX2UKGgGaAloD0MI3szoR8Mp6b+UhpRSlGgVSzJoFkdAqzaTTKDCg3V9lChoBmgJaA9DCKTjamRXmvO/lIaUUpRoFUsyaBZHQKs2EaR6nix1fZQoaAZoCWgPQwjKUBVT6afkv5SGlFKUaBVLMmgWR0CrOaVfmcOLdX2UKGgGaAloD0MIUwYOaOkK5L+UhpRSlGgVSzJoFkdAqzkVDneSCHV9lChoBmgJaA9DCHxHjQkxF+O/lIaUUpRoFUsyaBZHQKs4icyWRih1fZQoaAZoCWgPQwgiwVQza2n2v5SGlFKUaBVLMmgWR0CrOAe+mFajdX2UKGgGaAloD0MIqOLGLeZn6r+UhpRSlGgVSzJoFkdAqzuWhGpdbHV9lChoBmgJaA9DCBPVWwNbpem/lIaUUpRoFUsyaBZHQKs7BMuez2R1fZQoaAZoCWgPQwj0pbc/F43ov5SGlFKUaBVLMmgWR0CrOnkF4cFRdX2UKGgGaAloD0MI8X9HVKju5r+UhpRSlGgVSzJoFkdAqzn3OryUcHV9lChoBmgJaA9DCFcFajF4GOa/lIaUUpRoFUsyaBZHQKs9H6k69011fZQoaAZoCWgPQwh1OSUgJmHjv5SGlFKUaBVLMmgWR0CrPIyMtK7JdX2UKGgGaAloD0MIJetwdJXu1b+UhpRSlGgVSzJoFkdAqzwANsnAqXV9lChoBmgJaA9DCPKYgcr499m/lIaUUpRoFUsyaBZHQKs7fjVhCt11fZQoaAZoCWgPQwis/3OYLy/Zv5SGlFKUaBVLMmgWR0CrPmi6pYLcdX2UKGgGaAloD0MIQpdw6C1e8b+UhpRSlGgVSzJoFkdAqz3WBe5WinV9lChoBmgJaA9DCOKuXkVGh+e/lIaUUpRoFUsyaBZHQKs9SbXHzYp1fZQoaAZoCWgPQwhprWhznNv2v5SGlFKUaBVLMmgWR0CrPMdkauOkdX2UKGgGaAloD0MIRQ2mYfiI57+UhpRSlGgVSzJoFkdAqz/DTMJQcnV9lChoBmgJaA9DCP2FHjF6buK/lIaUUpRoFUsyaBZHQKs/MCnP3SN1fZQoaAZoCWgPQwhl/zwNGCTpv5SGlFKUaBVLMmgWR0CrPqPbXYlIdX2UKGgGaAloD0MIMc10r5P66L+UhpRSlGgVSzJoFkdAqz4hYJVsDXV9lChoBmgJaA9DCG/1nPS+8dm/lIaUUpRoFUsyaBZHQKtBCf7rLQp1fZQoaAZoCWgPQwjPpE3VPfLyv5SGlFKUaBVLMmgWR0CrQHeJgsshdX2UKGgGaAloD0MIBabTug1q4L+UhpRSlGgVSzJoFkdAqz/rQ/oq1HV9lChoBmgJaA9DCPQ0YJD06eK/lIaUUpRoFUsyaBZHQKs/aQrc0tR1fZQoaAZoCWgPQwhV3o5wWnD0v5SGlFKUaBVLMmgWR0CrQkRA8jiXdX2UKGgGaAloD0MI2/tUFRqI07+UhpRSlGgVSzJoFkdAq0GxOFg2InV9lChoBmgJaA9DCGAjSRCuAOy/lIaUUpRoFUsyaBZHQKtBJJul41R1fZQoaAZoCWgPQwgYsyWrIpzxv5SGlFKUaBVLMmgWR0CrQKHWBjFydX2UKGgGaAloD0MIRgvQtpp167+UhpRSlGgVSzJoFkdAq0N1sN2C/XV9lChoBmgJaA9DCOjewyXHndG/lIaUUpRoFUsyaBZHQKtC4qVhTfl1fZQoaAZoCWgPQwiifazgt6Htv5SGlFKUaBVLMmgWR0CrQlY6fapQdX2UKGgGaAloD0MIAfxTqkRZ8L+UhpRSlGgVSzJoFkdAq0HTo4dZJXV9lChoBmgJaA9DCEYJ+gs9YuG/lIaUUpRoFUsyaBZHQKtEpzijtXx1fZQoaAZoCWgPQwimD11Q37Lqv5SGlFKUaBVLMmgWR0CrRBSCWeH0dX2UKGgGaAloD0MI7ImuCz842r+UhpRSlGgVSzJoFkdAq0OIDLbHqHV9lChoBmgJaA9DCA2NJ4I4j+e/lIaUUpRoFUsyaBZHQKtDBY4ACGN1fZQoaAZoCWgPQwhio6zfTMzzv5SGlFKUaBVLMmgWR0CrRcUxEfDDdX2UKGgGaAloD0MIK01KQbeX4L+UhpRSlGgVSzJoFkdAq0UxzmwJPnV9lChoBmgJaA9DCK1RD9HoDva/lIaUUpRoFUsyaBZHQKtEpULDye91fZQoaAZoCWgPQwhIT5FDxM3bv5SGlFKUaBVLMmgWR0CrRCKzJIUbdX2UKGgGaAloD0MIr3srEhPU77+UhpRSlGgVSzJoFkdAq0bm/tY0VXV9lChoBmgJaA9DCPPGSWHe49m/lIaUUpRoFUsyaBZHQKtGU+rU9ZB1fZQoaAZoCWgPQwiezhWlhKD1v5SGlFKUaBVLMmgWR0CrRcdZid8RdX2UKGgGaAloD0MIdo2WAz3U6b+UhpRSlGgVSzJoFkdAq0VEtf5ULnV9lChoBmgJaA9DCEn3cwryM+W/lIaUUpRoFUsyaBZHQKtIBcUuctp1fZQoaAZoCWgPQwiJsUy/RDzlv5SGlFKUaBVLMmgWR0CrR3J40Mw2dX2UKGgGaAloD0MIhq5EoPqH47+UhpRSlGgVSzJoFkdAq0bl+RYA83V9lChoBmgJaA9DCDBmS1ZFuNa/lIaUUpRoFUsyaBZHQKtGY1He7+V1ZS4="
|
62 |
+
},
|
63 |
+
"ep_success_buffer": {
|
64 |
+
":type:": "<class 'collections.deque'>",
|
65 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
+
},
|
67 |
+
"_n_updates": 31250,
|
68 |
+
"n_steps": 8,
|
69 |
+
"gamma": 0.99,
|
70 |
+
"gae_lambda": 0.9,
|
71 |
+
"ent_coef": 0.0,
|
72 |
+
"vf_coef": 0.4,
|
73 |
+
"max_grad_norm": 0.5,
|
74 |
+
"normalize_advantage": false,
|
75 |
+
"observation_space": {
|
76 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
77 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
78 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
79 |
+
"_shape": null,
|
80 |
+
"dtype": null,
|
81 |
+
"_np_random": null
|
82 |
+
},
|
83 |
+
"action_space": {
|
84 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
85 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
86 |
+
"dtype": "float32",
|
87 |
+
"_shape": [
|
88 |
+
3
|
89 |
+
],
|
90 |
+
"low": "[-1. -1. -1.]",
|
91 |
+
"high": "[1. 1. 1.]",
|
92 |
+
"bounded_below": "[ True True True]",
|
93 |
+
"bounded_above": "[ True True True]",
|
94 |
+
"_np_random": null
|
95 |
+
},
|
96 |
+
"n_envs": 4
|
97 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d22c8e9315c528ef9a7b3b2c6f876b3ef129fa9454c0ad2b6f1fc6a6b6fc4519
|
3 |
+
size 45310
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cec17bf0ad590f371d9e5ea94cd6f3f18184b2cd0b147b0ecb5c6999bb348ecb
|
3 |
+
size 46590
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe4d6755cf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe4d675b640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688927755385024111, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArQ4BP+27Xbw9igs/rQ4BP+27Xbw9igs/rQ4BP+27Xbw9igs/rQ4BP+27Xbw9igs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAY5tjvTJdRr41Pn2/3ToZP7tzlL58tve+zoD7PT9yyT/gcy++w1q0P1q7Eb9JaZg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACtDgE/7btdvD2KCz+Dflg9TMciu5IuUT2tDgE/7btdvD2KCz+Dflg9TMciu5IuUT2tDgE/7btdvD2KCz+Dflg9TMciu5IuUT2tDgE/7btdvD2KCz+Dflg9TMciu5IuUT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.5041302 -0.01353357 0.5450781 ]\n [ 0.5041302 -0.01353357 0.5450781 ]\n [ 0.5041302 -0.01353357 0.5450781 ]\n [ 0.5041302 -0.01353357 0.5450781 ]]", "desired_goal": "[[-0.05556811 -0.19371489 -0.98923045]\n [ 0.59855443 -0.28994545 -0.48381412]\n [ 0.12280427 1.573799 -0.17134047]\n [ 1.4090198 -0.569265 1.190713 ]]", "observation": "[[ 0.5041302 -0.01353357 0.5450781 0.05285503 -0.0024838 0.0510698 ]\n [ 0.5041302 -0.01353357 0.5450781 0.05285503 -0.0024838 0.0510698 ]\n [ 0.5041302 -0.01353357 0.5450781 0.05285503 -0.0024838 0.0510698 ]\n [ 0.5041302 -0.01353357 0.5450781 0.05285503 -0.0024838 0.0510698 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAz2XZvPof4j3BIDc6rxDNveVc8T1m8bA9YmMPPXEyHT2G9VQ9fKYKvvdZnz22HSU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0265378 0.11041255 0.00069858]\n [-0.10012948 0.11785296 0.08639793]\n [ 0.03500689 0.03837818 0.05199196]\n [-0.13540071 0.07780831 0.16124615]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5IbfTbfszL+UhpRSlIwBbJRLMowBdJRHQKslU/OdGy51fZQoaAZoCWgPQwjQ7Lq3IjH4v5SGlFKUaBVLMmgWR0CrJMCoS+QEdX2UKGgGaAloD0MIvyhBf6FH6r+UhpRSlGgVSzJoFkdAqyQ0GRmseXV9lChoBmgJaA9DCOCEQgQcAvG/lIaUUpRoFUsyaBZHQKsjsYP5HmR1fZQoaAZoCWgPQwgXvOgrSDPZv5SGlFKUaBVLMmgWR0CrJstnXd0rdX2UKGgGaAloD0MI9inHZHH//L+UhpRSlGgVSzJoFkdAqyY5Sk0rLHV9lChoBmgJaA9DCJJB7iJMEfe/lIaUUpRoFUsyaBZHQKslrX+2mYV1fZQoaAZoCWgPQwhAL9y5MNLgv5SGlFKUaBVLMmgWR0CrJSr61stTdX2UKGgGaAloD0MIBygNNQpJ77+UhpRSlGgVSzJoFkdAqyfs0aZQYXV9lChoBmgJaA9DCIOnkCv17PG/lIaUUpRoFUsyaBZHQKsnWbTc6/91fZQoaAZoCWgPQwjpZKn1fqPov5SGlFKUaBVLMmgWR0CrJs1BMSK4dX2UKGgGaAloD0MIjubIyi+D6r+UhpRSlGgVSzJoFkdAqyZKshgVoHV9lChoBmgJaA9DCMe6uI0G8Pa/lIaUUpRoFUsyaBZHQKspPJV81Gd1fZQoaAZoCWgPQwh87ZklAWr6v5SGlFKUaBVLMmgWR0CrKKrYGt6pdX2UKGgGaAloD0MIsD2zJEBN3r+UhpRSlGgVSzJoFkdAqygeTPjXF3V9lChoBmgJaA9DCL01sFWChfq/lIaUUpRoFUsyaBZHQKsnnFKkEcN1fZQoaAZoCWgPQwhPIOwUq4buv5SGlFKUaBVLMmgWR0CrKn+yAxzrdX2UKGgGaAloD0MIKA6g3/dv77+UhpRSlGgVSzJoFkdAqyntq+JxenV9lChoBmgJaA9DCFQ3F3/bE+O/lIaUUpRoFUsyaBZHQKspYUSIxg11fZQoaAZoCWgPQwhMwRpn05Hpv5SGlFKUaBVLMmgWR0CrKN6nrIHUdX2UKGgGaAloD0MI78ftl08W9L+UhpRSlGgVSzJoFkdAqyvGKZUkwHV9lChoBmgJaA9DCNdMvtnmxtO/lIaUUpRoFUsyaBZHQKsrMyVObiJ1fZQoaAZoCWgPQwhKCiyAKQPmv5SGlFKUaBVLMmgWR0CrKqanR9gGdX2UKGgGaAloD0MIiGh0B7Ez4r+UhpRSlGgVSzJoFkdAqyokKeCkGnV9lChoBmgJaA9DCCzX22YqRPW/lIaUUpRoFUsyaBZHQKstGm0mdAh1fZQoaAZoCWgPQwguyQG7mrzjv5SGlFKUaBVLMmgWR0CrLIdp7CzkdX2UKGgGaAloD0MI4UGz696K6b+UhpRSlGgVSzJoFkdAqyv7GR3eN3V9lChoBmgJaA9DCM3MzMzMTPC/lIaUUpRoFUsyaBZHQKsreK6WgOB1fZQoaAZoCWgPQwg5CaUvhBzlv5SGlFKUaBVLMmgWR0CrLlVnVXmvdX2UKGgGaAloD0MIqRPQRNhw+7+UhpRSlGgVSzJoFkdAqy3CQ/5cknV9lChoBmgJaA9DCD7shQK2g/O/lIaUUpRoFUsyaBZHQKstNenhsIp1fZQoaAZoCWgPQwgUJSGRtvH9v5SGlFKUaBVLMmgWR0CrLLN+b3GodX2UKGgGaAloD0MIcNBefTw09b+UhpRSlGgVSzJoFkdAqy/fiJfplnV9lChoBmgJaA9DCD90QX3LnOO/lIaUUpRoFUsyaBZHQKsvTavicXp1fZQoaAZoCWgPQwgYIqev5ysAwJSGlFKUaBVLMmgWR0CrLsNzS1E3dX2UKGgGaAloD0MIzm4tk+F477+UhpRSlGgVSzJoFkdAqy5Bi5NGmXV9lChoBmgJaA9DCBADXfsCeuW/lIaUUpRoFUsyaBZHQKsx7MsYl6Z1fZQoaAZoCWgPQwhX7C+7J0/wv5SGlFKUaBVLMmgWR0CrMVp5VwPzdX2UKGgGaAloD0MIHCWvzjGg6b+UhpRSlGgVSzJoFkdAqzDPBguyvHV9lChoBmgJaA9DCP31CgvuR/S/lIaUUpRoFUsyaBZHQKswTQFcIJJ1fZQoaAZoCWgPQwi9UpYhjjX0v5SGlFKUaBVLMmgWR0CrM8J3HJcPdX2UKGgGaAloD0MIPN154jkb8r+UhpRSlGgVSzJoFkdAqzMwIOYplXV9lChoBmgJaA9DCHjy6bEtg/G/lIaUUpRoFUsyaBZHQKsypEd/8VJ1fZQoaAZoCWgPQwixMhr5vOLxv5SGlFKUaBVLMmgWR0CrMiMx46fbdX2UKGgGaAloD0MIho+IKZFE67+UhpRSlGgVSzJoFkdAqzW9MyrPt3V9lChoBmgJaA9DCI+JlGbzOOy/lIaUUpRoFUsyaBZHQKs1KyYXwb51fZQoaAZoCWgPQwio/Gt55Xrwv5SGlFKUaBVLMmgWR0CrNJ+melKsdX2UKGgGaAloD0MIu0bLgR7q7b+UhpRSlGgVSzJoFkdAqzQeKuSwGHV9lChoBmgJaA9DCJ0v9l580cC/lIaUUpRoFUsyaBZHQKs3sQjlgc91fZQoaAZoCWgPQwhFoPoHkQzUv5SGlFKUaBVLMmgWR0CrNx8CHRCydX2UKGgGaAloD0MI3szoR8Mp6b+UhpRSlGgVSzJoFkdAqzaTTKDCg3V9lChoBmgJaA9DCKTjamRXmvO/lIaUUpRoFUsyaBZHQKs2EaR6nix1fZQoaAZoCWgPQwjKUBVT6afkv5SGlFKUaBVLMmgWR0CrOaVfmcOLdX2UKGgGaAloD0MIUwYOaOkK5L+UhpRSlGgVSzJoFkdAqzkVDneSCHV9lChoBmgJaA9DCHxHjQkxF+O/lIaUUpRoFUsyaBZHQKs4icyWRih1fZQoaAZoCWgPQwgiwVQza2n2v5SGlFKUaBVLMmgWR0CrOAe+mFajdX2UKGgGaAloD0MIqOLGLeZn6r+UhpRSlGgVSzJoFkdAqzuWhGpdbHV9lChoBmgJaA9DCBPVWwNbpem/lIaUUpRoFUsyaBZHQKs7BMuez2R1fZQoaAZoCWgPQwj0pbc/F43ov5SGlFKUaBVLMmgWR0CrOnkF4cFRdX2UKGgGaAloD0MI8X9HVKju5r+UhpRSlGgVSzJoFkdAqzn3OryUcHV9lChoBmgJaA9DCFcFajF4GOa/lIaUUpRoFUsyaBZHQKs9H6k69011fZQoaAZoCWgPQwh1OSUgJmHjv5SGlFKUaBVLMmgWR0CrPIyMtK7JdX2UKGgGaAloD0MIJetwdJXu1b+UhpRSlGgVSzJoFkdAqzwANsnAqXV9lChoBmgJaA9DCPKYgcr499m/lIaUUpRoFUsyaBZHQKs7fjVhCt11fZQoaAZoCWgPQwis/3OYLy/Zv5SGlFKUaBVLMmgWR0CrPmi6pYLcdX2UKGgGaAloD0MIQpdw6C1e8b+UhpRSlGgVSzJoFkdAqz3WBe5WinV9lChoBmgJaA9DCOKuXkVGh+e/lIaUUpRoFUsyaBZHQKs9SbXHzYp1fZQoaAZoCWgPQwhprWhznNv2v5SGlFKUaBVLMmgWR0CrPMdkauOkdX2UKGgGaAloD0MIRQ2mYfiI57+UhpRSlGgVSzJoFkdAqz/DTMJQcnV9lChoBmgJaA9DCP2FHjF6buK/lIaUUpRoFUsyaBZHQKs/MCnP3SN1fZQoaAZoCWgPQwhl/zwNGCTpv5SGlFKUaBVLMmgWR0CrPqPbXYlIdX2UKGgGaAloD0MIMc10r5P66L+UhpRSlGgVSzJoFkdAqz4hYJVsDXV9lChoBmgJaA9DCG/1nPS+8dm/lIaUUpRoFUsyaBZHQKtBCf7rLQp1fZQoaAZoCWgPQwjPpE3VPfLyv5SGlFKUaBVLMmgWR0CrQHeJgsshdX2UKGgGaAloD0MIBabTug1q4L+UhpRSlGgVSzJoFkdAqz/rQ/oq1HV9lChoBmgJaA9DCPQ0YJD06eK/lIaUUpRoFUsyaBZHQKs/aQrc0tR1fZQoaAZoCWgPQwhV3o5wWnD0v5SGlFKUaBVLMmgWR0CrQkRA8jiXdX2UKGgGaAloD0MI2/tUFRqI07+UhpRSlGgVSzJoFkdAq0GxOFg2InV9lChoBmgJaA9DCGAjSRCuAOy/lIaUUpRoFUsyaBZHQKtBJJul41R1fZQoaAZoCWgPQwgYsyWrIpzxv5SGlFKUaBVLMmgWR0CrQKHWBjFydX2UKGgGaAloD0MIRgvQtpp167+UhpRSlGgVSzJoFkdAq0N1sN2C/XV9lChoBmgJaA9DCOjewyXHndG/lIaUUpRoFUsyaBZHQKtC4qVhTfl1fZQoaAZoCWgPQwiifazgt6Htv5SGlFKUaBVLMmgWR0CrQlY6fapQdX2UKGgGaAloD0MIAfxTqkRZ8L+UhpRSlGgVSzJoFkdAq0HTo4dZJXV9lChoBmgJaA9DCEYJ+gs9YuG/lIaUUpRoFUsyaBZHQKtEpzijtXx1fZQoaAZoCWgPQwimD11Q37Lqv5SGlFKUaBVLMmgWR0CrRBSCWeH0dX2UKGgGaAloD0MI7ImuCz842r+UhpRSlGgVSzJoFkdAq0OIDLbHqHV9lChoBmgJaA9DCA2NJ4I4j+e/lIaUUpRoFUsyaBZHQKtDBY4ACGN1fZQoaAZoCWgPQwhio6zfTMzzv5SGlFKUaBVLMmgWR0CrRcUxEfDDdX2UKGgGaAloD0MIK01KQbeX4L+UhpRSlGgVSzJoFkdAq0UxzmwJPnV9lChoBmgJaA9DCK1RD9HoDva/lIaUUpRoFUsyaBZHQKtEpULDye91fZQoaAZoCWgPQwhIT5FDxM3bv5SGlFKUaBVLMmgWR0CrRCKzJIUbdX2UKGgGaAloD0MIr3srEhPU77+UhpRSlGgVSzJoFkdAq0bm/tY0VXV9lChoBmgJaA9DCPPGSWHe49m/lIaUUpRoFUsyaBZHQKtGU+rU9ZB1fZQoaAZoCWgPQwiezhWlhKD1v5SGlFKUaBVLMmgWR0CrRcdZid8RdX2UKGgGaAloD0MIdo2WAz3U6b+UhpRSlGgVSzJoFkdAq0VEtf5ULnV9lChoBmgJaA9DCEn3cwryM+W/lIaUUpRoFUsyaBZHQKtIBcUuctp1fZQoaAZoCWgPQwiJsUy/RDzlv5SGlFKUaBVLMmgWR0CrR3J40Mw2dX2UKGgGaAloD0MIhq5EoPqH47+UhpRSlGgVSzJoFkdAq0bl+RYA83V9lChoBmgJaA9DCDBmS1ZFuNa/lIaUUpRoFUsyaBZHQKtGY1He7+V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (284 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.6563883678987622, "std_reward": 0.20821286879361453, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-09T19:36:56.328350"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fbb5ed7f9bfb90846fda8e741ca44ebf0b0054d5062e6ca5e7e378716e8cbeb
|
3 |
+
size 2387
|