--- license: apache-2.0 base_model: openlm-research/open_llama_3b_v2 tags: - generated_from_trainer model-index: - name: working results: [] --- # working This model is a fine-tuned version of [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) on the None dataset. ## Model description training_arguments = TrainingArguments( per_device_train_batch_size=8, num_train_epochs=10, learning_rate=3e-5, gradient_accumulation_steps=2, optim="adamw_hf", fp16=True, logging_steps=1, # debug=True, output_dir="/kaggle/Tatvajsh/Lllama_AHS_V_7.0/" # warmup_steps=100, ) trainer = SFTTrainer( model=model, tokenizer=tokenizer, train_dataset=dataset, dataset_text_field="text", peft_config=lora_config, max_seq_length=512, args=training_arguments, # packing=True,#change ) trainer.train() EPOCHS=[30-50] from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=16, lora_alpha=64, target_modules=['base_layer','gate_proj', 'v_proj','up_proj','down_proj','q_proj','k_proj','o_proj'], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" ) def generate_prompt(row) -> str: prompt=f""" Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {row['Instruction']} ### Response: {row['Answer']} ### End """ return prompt WHEN THE TRAINING LOSS IN NOT REDUCING THEN TRY SETTING FOR LESSER VALUE OF LEARNING RATE I.E. 2E-5 TO 3E-5,ETC. More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.14.1