TearGosling commited on
Commit
15a0bd6
·
verified ·
1 Parent(s): 5c61222

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|extratoken_100|>": 50356,
3
+ "<|extratoken_101|>": 50357,
4
+ "<|extratoken_102|>": 50358,
5
+ "<|extratoken_103|>": 50359,
6
+ "<|extratoken_104|>": 50360,
7
+ "<|extratoken_105|>": 50361,
8
+ "<|extratoken_106|>": 50362,
9
+ "<|extratoken_107|>": 50363,
10
+ "<|extratoken_108|>": 50364,
11
+ "<|extratoken_109|>": 50365,
12
+ "<|extratoken_10|>": 50266,
13
+ "<|extratoken_110|>": 50366,
14
+ "<|extratoken_111|>": 50367,
15
+ "<|extratoken_112|>": 50368,
16
+ "<|extratoken_113|>": 50369,
17
+ "<|extratoken_114|>": 50370,
18
+ "<|extratoken_115|>": 50371,
19
+ "<|extratoken_116|>": 50372,
20
+ "<|extratoken_117|>": 50373,
21
+ "<|extratoken_118|>": 50374,
22
+ "<|extratoken_119|>": 50375,
23
+ "<|extratoken_11|>": 50267,
24
+ "<|extratoken_120|>": 50376,
25
+ "<|extratoken_121|>": 50377,
26
+ "<|extratoken_122|>": 50378,
27
+ "<|extratoken_123|>": 50379,
28
+ "<|extratoken_124|>": 50380,
29
+ "<|extratoken_125|>": 50381,
30
+ "<|extratoken_126|>": 50382,
31
+ "<|extratoken_127|>": 50383,
32
+ "<|extratoken_128|>": 50384,
33
+ "<|extratoken_129|>": 50385,
34
+ "<|extratoken_12|>": 50268,
35
+ "<|extratoken_130|>": 50386,
36
+ "<|extratoken_131|>": 50387,
37
+ "<|extratoken_132|>": 50388,
38
+ "<|extratoken_133|>": 50389,
39
+ "<|extratoken_134|>": 50390,
40
+ "<|extratoken_135|>": 50391,
41
+ "<|extratoken_136|>": 50392,
42
+ "<|extratoken_137|>": 50393,
43
+ "<|extratoken_138|>": 50394,
44
+ "<|extratoken_139|>": 50395,
45
+ "<|extratoken_13|>": 50269,
46
+ "<|extratoken_140|>": 50396,
47
+ "<|extratoken_141|>": 50397,
48
+ "<|extratoken_142|>": 50398,
49
+ "<|extratoken_143|>": 50399,
50
+ "<|extratoken_14|>": 50270,
51
+ "<|extratoken_15|>": 50271,
52
+ "<|extratoken_16|>": 50272,
53
+ "<|extratoken_17|>": 50273,
54
+ "<|extratoken_18|>": 50274,
55
+ "<|extratoken_19|>": 50275,
56
+ "<|extratoken_1|>": 50257,
57
+ "<|extratoken_20|>": 50276,
58
+ "<|extratoken_21|>": 50277,
59
+ "<|extratoken_22|>": 50278,
60
+ "<|extratoken_23|>": 50279,
61
+ "<|extratoken_24|>": 50280,
62
+ "<|extratoken_25|>": 50281,
63
+ "<|extratoken_26|>": 50282,
64
+ "<|extratoken_27|>": 50283,
65
+ "<|extratoken_28|>": 50284,
66
+ "<|extratoken_29|>": 50285,
67
+ "<|extratoken_2|>": 50258,
68
+ "<|extratoken_30|>": 50286,
69
+ "<|extratoken_31|>": 50287,
70
+ "<|extratoken_32|>": 50288,
71
+ "<|extratoken_33|>": 50289,
72
+ "<|extratoken_34|>": 50290,
73
+ "<|extratoken_35|>": 50291,
74
+ "<|extratoken_36|>": 50292,
75
+ "<|extratoken_37|>": 50293,
76
+ "<|extratoken_38|>": 50294,
77
+ "<|extratoken_39|>": 50295,
78
+ "<|extratoken_3|>": 50259,
79
+ "<|extratoken_40|>": 50296,
80
+ "<|extratoken_41|>": 50297,
81
+ "<|extratoken_42|>": 50298,
82
+ "<|extratoken_43|>": 50299,
83
+ "<|extratoken_44|>": 50300,
84
+ "<|extratoken_45|>": 50301,
85
+ "<|extratoken_46|>": 50302,
86
+ "<|extratoken_47|>": 50303,
87
+ "<|extratoken_48|>": 50304,
88
+ "<|extratoken_49|>": 50305,
89
+ "<|extratoken_4|>": 50260,
90
+ "<|extratoken_50|>": 50306,
91
+ "<|extratoken_51|>": 50307,
92
+ "<|extratoken_52|>": 50308,
93
+ "<|extratoken_53|>": 50309,
94
+ "<|extratoken_54|>": 50310,
95
+ "<|extratoken_55|>": 50311,
96
+ "<|extratoken_56|>": 50312,
97
+ "<|extratoken_57|>": 50313,
98
+ "<|extratoken_58|>": 50314,
99
+ "<|extratoken_59|>": 50315,
100
+ "<|extratoken_5|>": 50261,
101
+ "<|extratoken_60|>": 50316,
102
+ "<|extratoken_61|>": 50317,
103
+ "<|extratoken_62|>": 50318,
104
+ "<|extratoken_63|>": 50319,
105
+ "<|extratoken_64|>": 50320,
106
+ "<|extratoken_65|>": 50321,
107
+ "<|extratoken_66|>": 50322,
108
+ "<|extratoken_67|>": 50323,
109
+ "<|extratoken_68|>": 50324,
110
+ "<|extratoken_69|>": 50325,
111
+ "<|extratoken_6|>": 50262,
112
+ "<|extratoken_70|>": 50326,
113
+ "<|extratoken_71|>": 50327,
114
+ "<|extratoken_72|>": 50328,
115
+ "<|extratoken_73|>": 50329,
116
+ "<|extratoken_74|>": 50330,
117
+ "<|extratoken_75|>": 50331,
118
+ "<|extratoken_76|>": 50332,
119
+ "<|extratoken_77|>": 50333,
120
+ "<|extratoken_78|>": 50334,
121
+ "<|extratoken_79|>": 50335,
122
+ "<|extratoken_7|>": 50263,
123
+ "<|extratoken_80|>": 50336,
124
+ "<|extratoken_81|>": 50337,
125
+ "<|extratoken_82|>": 50338,
126
+ "<|extratoken_83|>": 50339,
127
+ "<|extratoken_84|>": 50340,
128
+ "<|extratoken_85|>": 50341,
129
+ "<|extratoken_86|>": 50342,
130
+ "<|extratoken_87|>": 50343,
131
+ "<|extratoken_88|>": 50344,
132
+ "<|extratoken_89|>": 50345,
133
+ "<|extratoken_8|>": 50264,
134
+ "<|extratoken_90|>": 50346,
135
+ "<|extratoken_91|>": 50347,
136
+ "<|extratoken_92|>": 50348,
137
+ "<|extratoken_93|>": 50349,
138
+ "<|extratoken_94|>": 50350,
139
+ "<|extratoken_95|>": 50351,
140
+ "<|extratoken_96|>": 50352,
141
+ "<|extratoken_97|>": 50353,
142
+ "<|extratoken_98|>": 50354,
143
+ "<|extratoken_99|>": 50355,
144
+ "<|extratoken_9|>": 50265
145
+ }
config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_function": "gelu_new",
3
+ "architectures": [
4
+ "GPTJMoEForCausalLM"
5
+ ],
6
+ "attn_pdrop": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_gptj_moe.GPTJMoEConfig",
9
+ "AutoModel": "modeling_gptj_moe.GPTJMoEModel",
10
+ "AutoModelForCausalLM": "modeling_gptj_moe.GPTJMoEForCausalLM"
11
+ },
12
+ "bos_token_id": 50256,
13
+ "embd_pdrop": 0.0,
14
+ "eos_token_id": 50256,
15
+ "gradient_checkpointing": false,
16
+ "initializer_range": 0.02,
17
+ "layer_norm_epsilon": 1e-05,
18
+ "model_type": "gptj_moe",
19
+ "n_embd": 4096,
20
+ "n_head": 16,
21
+ "n_inner": null,
22
+ "n_layer": 28,
23
+ "n_positions": 2048,
24
+ "num_experts_per_tok": 2,
25
+ "num_local_experts": 4,
26
+ "output_router_logits": false,
27
+ "resid_pdrop": 0.0,
28
+ "rotary_dim": 64,
29
+ "router_aux_loss_coef": 0.001,
30
+ "router_jitter_noise": 0.0,
31
+ "scale_attn_weights": true,
32
+ "summary_activation": null,
33
+ "summary_first_dropout": 0.1,
34
+ "summary_proj_to_labels": true,
35
+ "summary_type": "cls_index",
36
+ "summary_use_proj": true,
37
+ "task_specific_params": {
38
+ "text-generation": {
39
+ "do_sample": true,
40
+ "max_length": 50,
41
+ "temperature": 1.0
42
+ }
43
+ },
44
+ "tie_word_embeddings": false,
45
+ "tokenizer_class": "GPT2Tokenizer",
46
+ "torch_dtype": "bfloat16",
47
+ "transformers_version": "4.40.0.dev0",
48
+ "use_cache": true,
49
+ "vocab_size": 50400
50
+ }
configuration_gptj_moe.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ class GPTJMoEConfig(PretrainedConfig):
7
+ r"""
8
+ This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J
9
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
10
+ defaults will yield a similar configuration to that of the GPT-J
11
+ [EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from
12
+ [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`]
13
+ for more information.
14
+
15
+ Args:
16
+ vocab_size (`int`, *optional*, defaults to 50400):
17
+ Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the
18
+ `inputs_ids` passed when calling [`GPTJModel`].
19
+ n_positions (`int`, *optional*, defaults to 2048):
20
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
21
+ just in case (e.g., 512 or 1024 or 2048).
22
+ n_embd (`int`, *optional*, defaults to 4096):
23
+ Dimensionality of the embeddings and hidden states.
24
+ n_layer (`int`, *optional*, defaults to 28):
25
+ Number of hidden layers in the Transformer encoder.
26
+ n_head (`int`, *optional*, defaults to 16):
27
+ Number of attention heads for each attention layer in the Transformer encoder.
28
+ rotary_dim (`int`, *optional*, defaults to 64):
29
+ Number of dimensions in the embedding that Rotary Position Embedding is applied to.
30
+ n_inner (`int`, *optional*, defaults to None):
31
+ Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
32
+ activation_function (`str`, *optional*, defaults to `"gelu_new"`):
33
+ Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
34
+ resid_pdrop (`float`, *optional*, defaults to 0.1):
35
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
36
+ embd_pdrop (`int`, *optional*, defaults to 0.1):
37
+ The dropout ratio for the embeddings.
38
+ attn_pdrop (`float`, *optional*, defaults to 0.1):
39
+ The dropout ratio for the attention.
40
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
41
+ The epsilon to use in the layer normalization layers.
42
+ initializer_range (`float`, *optional*, defaults to 0.02):
43
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
44
+ use_cache (`bool`, *optional*, defaults to `True`):
45
+ Whether or not the model should return the last key/values attentions (not used by all models).
46
+ num_experts_per_tok (`int`, *optional*, defaults to 2):
47
+ The number of experts to root per-token, can be also interpreted as the `top-p` routing
48
+ parameter
49
+ num_local_experts (`int`, *optional*, defaults to 4):
50
+ Number of experts per Sparse MLP layer.
51
+ output_router_logits (`bool`, *optional*, defaults to `False`):
52
+ Whether or not the router logits should be returned by the model. Enabeling this will also
53
+ allow the model to output the auxiliary loss. See [here]() for more details
54
+ router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
55
+ The aux loss factor for the total loss.
56
+ router_jitter_noise (`float`, *optional*, defaults to 0.0):
57
+ Amount of noise to add to the router.
58
+ """
59
+
60
+ model_type = "gptj_moe"
61
+ attribute_map = {
62
+ "max_position_embeddings": "n_positions",
63
+ "hidden_size": "n_embd",
64
+ "num_attention_heads": "n_head",
65
+ "num_hidden_layers": "n_layer",
66
+ }
67
+
68
+ def __init__(
69
+ self,
70
+ vocab_size=50400,
71
+ n_positions=2048,
72
+ n_embd=4096,
73
+ n_layer=28,
74
+ n_head=16,
75
+ rotary_dim=64,
76
+ n_inner=None,
77
+ activation_function="gelu_new",
78
+ resid_pdrop=0.0,
79
+ embd_pdrop=0.0,
80
+ attn_pdrop=0.0,
81
+ layer_norm_epsilon=1e-5,
82
+ initializer_range=0.02,
83
+ use_cache=True,
84
+ bos_token_id=50256,
85
+ eos_token_id=50256,
86
+ tie_word_embeddings=False,
87
+ n_experts_per_tok=2,
88
+ n_local_experts=4,
89
+ output_router_logits=False,
90
+ router_aux_loss_coef=0.001,
91
+ router_jitter_noise=0.0,
92
+ **kwargs,
93
+ ):
94
+ self.vocab_size = vocab_size
95
+ self.n_positions = n_positions
96
+ self.n_embd = n_embd
97
+ self.n_layer = n_layer
98
+ self.n_head = n_head
99
+ self.n_inner = n_inner
100
+ self.rotary_dim = rotary_dim
101
+ self.activation_function = activation_function
102
+ self.resid_pdrop = resid_pdrop
103
+ self.embd_pdrop = embd_pdrop
104
+ self.attn_pdrop = attn_pdrop
105
+ self.layer_norm_epsilon = layer_norm_epsilon
106
+ self.initializer_range = initializer_range
107
+ self.use_cache = use_cache
108
+
109
+ self.bos_token_id = bos_token_id
110
+ self.eos_token_id = eos_token_id
111
+
112
+ self.num_experts_per_tok = n_experts_per_tok
113
+ self.num_local_experts = n_local_experts
114
+ self.output_router_logits = output_router_logits
115
+ self.router_aux_loss_coef = router_aux_loss_coef
116
+ self.router_jitter_noise = router_jitter_noise
117
+
118
+ super().__init__(
119
+ bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
120
+ )
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 50256,
4
+ "eos_token_id": 50256,
5
+ "transformers_version": "4.40.0.dev0"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56b567fa4fb5ba701d0a89e3e21f61bf450adaa93baeee7877cf918723e31086
3
+ size 4977101656
model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9af7ef4e8ce64473087fbf84f72524a16907ecde61330362cafe2c9aa1232e0
3
+ size 4966952456
model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:505a7867107466c875521fa16f6cafec577f36ebf9c99313ca293531b26fafcd
3
+ size 4966944520
model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:827cb5b4972c4b3b1b26b6da5b8e5edaf1a9b55939bff202002b017bf0bc5beb
3
+ size 4966952864
model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dea322e2cf83970e37a13679157d50a8effe44b2a5ab742dbd5ab0b27c87d281
3
+ size 4966952552
model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db980fdb921b826014a3704fa9516b5a77857b64640216a97492b895b3ff975d
3
+ size 4966927976
model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45af2b4065d5a8d0058e6a59729774dea7fa54b3c25e585a0889e90205a990ac
3
+ size 4842951552
model.safetensors.index.json ADDED
@@ -0,0 +1,656 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 34654702016
4
+ },
5
+ "weight_map": {
6
+ "lm_head.bias": "model-00007-of-00007.safetensors",
7
+ "lm_head.weight": "model-00007-of-00007.safetensors",
8
+ "transformer.h.0.attn.k_proj.weight": "model-00001-of-00007.safetensors",
9
+ "transformer.h.0.attn.out_proj.weight": "model-00001-of-00007.safetensors",
10
+ "transformer.h.0.attn.q_proj.weight": "model-00001-of-00007.safetensors",
11
+ "transformer.h.0.attn.v_proj.weight": "model-00001-of-00007.safetensors",
12
+ "transformer.h.0.block_sparse_moe.experts.0.fc_in.bias": "model-00001-of-00007.safetensors",
13
+ "transformer.h.0.block_sparse_moe.experts.0.fc_in.weight": "model-00001-of-00007.safetensors",
14
+ "transformer.h.0.block_sparse_moe.experts.0.fc_out.bias": "model-00001-of-00007.safetensors",
15
+ "transformer.h.0.block_sparse_moe.experts.0.fc_out.weight": "model-00001-of-00007.safetensors",
16
+ "transformer.h.0.block_sparse_moe.experts.1.fc_in.bias": "model-00001-of-00007.safetensors",
17
+ "transformer.h.0.block_sparse_moe.experts.1.fc_in.weight": "model-00001-of-00007.safetensors",
18
+ "transformer.h.0.block_sparse_moe.experts.1.fc_out.bias": "model-00001-of-00007.safetensors",
19
+ "transformer.h.0.block_sparse_moe.experts.1.fc_out.weight": "model-00001-of-00007.safetensors",
20
+ "transformer.h.0.block_sparse_moe.experts.2.fc_in.bias": "model-00001-of-00007.safetensors",
21
+ "transformer.h.0.block_sparse_moe.experts.2.fc_in.weight": "model-00001-of-00007.safetensors",
22
+ "transformer.h.0.block_sparse_moe.experts.2.fc_out.bias": "model-00001-of-00007.safetensors",
23
+ "transformer.h.0.block_sparse_moe.experts.2.fc_out.weight": "model-00001-of-00007.safetensors",
24
+ "transformer.h.0.block_sparse_moe.experts.3.fc_in.bias": "model-00001-of-00007.safetensors",
25
+ "transformer.h.0.block_sparse_moe.experts.3.fc_in.weight": "model-00001-of-00007.safetensors",
26
+ "transformer.h.0.block_sparse_moe.experts.3.fc_out.bias": "model-00001-of-00007.safetensors",
27
+ "transformer.h.0.block_sparse_moe.experts.3.fc_out.weight": "model-00001-of-00007.safetensors",
28
+ "transformer.h.0.block_sparse_moe.gate.weight": "model-00001-of-00007.safetensors",
29
+ "transformer.h.0.ln_1.bias": "model-00001-of-00007.safetensors",
30
+ "transformer.h.0.ln_1.weight": "model-00001-of-00007.safetensors",
31
+ "transformer.h.1.attn.k_proj.weight": "model-00001-of-00007.safetensors",
32
+ "transformer.h.1.attn.out_proj.weight": "model-00001-of-00007.safetensors",
33
+ "transformer.h.1.attn.q_proj.weight": "model-00001-of-00007.safetensors",
34
+ "transformer.h.1.attn.v_proj.weight": "model-00001-of-00007.safetensors",
35
+ "transformer.h.1.block_sparse_moe.experts.0.fc_in.bias": "model-00001-of-00007.safetensors",
36
+ "transformer.h.1.block_sparse_moe.experts.0.fc_in.weight": "model-00001-of-00007.safetensors",
37
+ "transformer.h.1.block_sparse_moe.experts.0.fc_out.bias": "model-00001-of-00007.safetensors",
38
+ "transformer.h.1.block_sparse_moe.experts.0.fc_out.weight": "model-00001-of-00007.safetensors",
39
+ "transformer.h.1.block_sparse_moe.experts.1.fc_in.bias": "model-00001-of-00007.safetensors",
40
+ "transformer.h.1.block_sparse_moe.experts.1.fc_in.weight": "model-00001-of-00007.safetensors",
41
+ "transformer.h.1.block_sparse_moe.experts.1.fc_out.bias": "model-00001-of-00007.safetensors",
42
+ "transformer.h.1.block_sparse_moe.experts.1.fc_out.weight": "model-00001-of-00007.safetensors",
43
+ "transformer.h.1.block_sparse_moe.experts.2.fc_in.bias": "model-00001-of-00007.safetensors",
44
+ "transformer.h.1.block_sparse_moe.experts.2.fc_in.weight": "model-00001-of-00007.safetensors",
45
+ "transformer.h.1.block_sparse_moe.experts.2.fc_out.bias": "model-00001-of-00007.safetensors",
46
+ "transformer.h.1.block_sparse_moe.experts.2.fc_out.weight": "model-00001-of-00007.safetensors",
47
+ "transformer.h.1.block_sparse_moe.experts.3.fc_in.bias": "model-00001-of-00007.safetensors",
48
+ "transformer.h.1.block_sparse_moe.experts.3.fc_in.weight": "model-00001-of-00007.safetensors",
49
+ "transformer.h.1.block_sparse_moe.experts.3.fc_out.bias": "model-00001-of-00007.safetensors",
50
+ "transformer.h.1.block_sparse_moe.experts.3.fc_out.weight": "model-00001-of-00007.safetensors",
51
+ "transformer.h.1.block_sparse_moe.gate.weight": "model-00001-of-00007.safetensors",
52
+ "transformer.h.1.ln_1.bias": "model-00001-of-00007.safetensors",
53
+ "transformer.h.1.ln_1.weight": "model-00001-of-00007.safetensors",
54
+ "transformer.h.10.attn.k_proj.weight": "model-00003-of-00007.safetensors",
55
+ "transformer.h.10.attn.out_proj.weight": "model-00003-of-00007.safetensors",
56
+ "transformer.h.10.attn.q_proj.weight": "model-00003-of-00007.safetensors",
57
+ "transformer.h.10.attn.v_proj.weight": "model-00003-of-00007.safetensors",
58
+ "transformer.h.10.block_sparse_moe.experts.0.fc_in.bias": "model-00003-of-00007.safetensors",
59
+ "transformer.h.10.block_sparse_moe.experts.0.fc_in.weight": "model-00003-of-00007.safetensors",
60
+ "transformer.h.10.block_sparse_moe.experts.0.fc_out.bias": "model-00003-of-00007.safetensors",
61
+ "transformer.h.10.block_sparse_moe.experts.0.fc_out.weight": "model-00003-of-00007.safetensors",
62
+ "transformer.h.10.block_sparse_moe.experts.1.fc_in.bias": "model-00003-of-00007.safetensors",
63
+ "transformer.h.10.block_sparse_moe.experts.1.fc_in.weight": "model-00003-of-00007.safetensors",
64
+ "transformer.h.10.block_sparse_moe.experts.1.fc_out.bias": "model-00003-of-00007.safetensors",
65
+ "transformer.h.10.block_sparse_moe.experts.1.fc_out.weight": "model-00003-of-00007.safetensors",
66
+ "transformer.h.10.block_sparse_moe.experts.2.fc_in.bias": "model-00003-of-00007.safetensors",
67
+ "transformer.h.10.block_sparse_moe.experts.2.fc_in.weight": "model-00003-of-00007.safetensors",
68
+ "transformer.h.10.block_sparse_moe.experts.2.fc_out.bias": "model-00003-of-00007.safetensors",
69
+ "transformer.h.10.block_sparse_moe.experts.2.fc_out.weight": "model-00003-of-00007.safetensors",
70
+ "transformer.h.10.block_sparse_moe.experts.3.fc_in.bias": "model-00003-of-00007.safetensors",
71
+ "transformer.h.10.block_sparse_moe.experts.3.fc_in.weight": "model-00003-of-00007.safetensors",
72
+ "transformer.h.10.block_sparse_moe.experts.3.fc_out.bias": "model-00003-of-00007.safetensors",
73
+ "transformer.h.10.block_sparse_moe.experts.3.fc_out.weight": "model-00003-of-00007.safetensors",
74
+ "transformer.h.10.block_sparse_moe.gate.weight": "model-00003-of-00007.safetensors",
75
+ "transformer.h.10.ln_1.bias": "model-00003-of-00007.safetensors",
76
+ "transformer.h.10.ln_1.weight": "model-00003-of-00007.safetensors",
77
+ "transformer.h.11.attn.k_proj.weight": "model-00003-of-00007.safetensors",
78
+ "transformer.h.11.attn.out_proj.weight": "model-00003-of-00007.safetensors",
79
+ "transformer.h.11.attn.q_proj.weight": "model-00003-of-00007.safetensors",
80
+ "transformer.h.11.attn.v_proj.weight": "model-00003-of-00007.safetensors",
81
+ "transformer.h.11.block_sparse_moe.experts.0.fc_in.bias": "model-00003-of-00007.safetensors",
82
+ "transformer.h.11.block_sparse_moe.experts.0.fc_in.weight": "model-00003-of-00007.safetensors",
83
+ "transformer.h.11.block_sparse_moe.experts.0.fc_out.bias": "model-00003-of-00007.safetensors",
84
+ "transformer.h.11.block_sparse_moe.experts.0.fc_out.weight": "model-00003-of-00007.safetensors",
85
+ "transformer.h.11.block_sparse_moe.experts.1.fc_in.bias": "model-00003-of-00007.safetensors",
86
+ "transformer.h.11.block_sparse_moe.experts.1.fc_in.weight": "model-00003-of-00007.safetensors",
87
+ "transformer.h.11.block_sparse_moe.experts.1.fc_out.bias": "model-00003-of-00007.safetensors",
88
+ "transformer.h.11.block_sparse_moe.experts.1.fc_out.weight": "model-00003-of-00007.safetensors",
89
+ "transformer.h.11.block_sparse_moe.experts.2.fc_in.bias": "model-00003-of-00007.safetensors",
90
+ "transformer.h.11.block_sparse_moe.experts.2.fc_in.weight": "model-00003-of-00007.safetensors",
91
+ "transformer.h.11.block_sparse_moe.experts.2.fc_out.bias": "model-00003-of-00007.safetensors",
92
+ "transformer.h.11.block_sparse_moe.experts.2.fc_out.weight": "model-00003-of-00007.safetensors",
93
+ "transformer.h.11.block_sparse_moe.experts.3.fc_in.bias": "model-00003-of-00007.safetensors",
94
+ "transformer.h.11.block_sparse_moe.experts.3.fc_in.weight": "model-00003-of-00007.safetensors",
95
+ "transformer.h.11.block_sparse_moe.experts.3.fc_out.bias": "model-00003-of-00007.safetensors",
96
+ "transformer.h.11.block_sparse_moe.experts.3.fc_out.weight": "model-00003-of-00007.safetensors",
97
+ "transformer.h.11.block_sparse_moe.gate.weight": "model-00003-of-00007.safetensors",
98
+ "transformer.h.11.ln_1.bias": "model-00003-of-00007.safetensors",
99
+ "transformer.h.11.ln_1.weight": "model-00003-of-00007.safetensors",
100
+ "transformer.h.12.attn.k_proj.weight": "model-00004-of-00007.safetensors",
101
+ "transformer.h.12.attn.out_proj.weight": "model-00004-of-00007.safetensors",
102
+ "transformer.h.12.attn.q_proj.weight": "model-00004-of-00007.safetensors",
103
+ "transformer.h.12.attn.v_proj.weight": "model-00004-of-00007.safetensors",
104
+ "transformer.h.12.block_sparse_moe.experts.0.fc_in.bias": "model-00004-of-00007.safetensors",
105
+ "transformer.h.12.block_sparse_moe.experts.0.fc_in.weight": "model-00004-of-00007.safetensors",
106
+ "transformer.h.12.block_sparse_moe.experts.0.fc_out.bias": "model-00004-of-00007.safetensors",
107
+ "transformer.h.12.block_sparse_moe.experts.0.fc_out.weight": "model-00004-of-00007.safetensors",
108
+ "transformer.h.12.block_sparse_moe.experts.1.fc_in.bias": "model-00004-of-00007.safetensors",
109
+ "transformer.h.12.block_sparse_moe.experts.1.fc_in.weight": "model-00004-of-00007.safetensors",
110
+ "transformer.h.12.block_sparse_moe.experts.1.fc_out.bias": "model-00004-of-00007.safetensors",
111
+ "transformer.h.12.block_sparse_moe.experts.1.fc_out.weight": "model-00004-of-00007.safetensors",
112
+ "transformer.h.12.block_sparse_moe.experts.2.fc_in.bias": "model-00004-of-00007.safetensors",
113
+ "transformer.h.12.block_sparse_moe.experts.2.fc_in.weight": "model-00004-of-00007.safetensors",
114
+ "transformer.h.12.block_sparse_moe.experts.2.fc_out.bias": "model-00004-of-00007.safetensors",
115
+ "transformer.h.12.block_sparse_moe.experts.2.fc_out.weight": "model-00004-of-00007.safetensors",
116
+ "transformer.h.12.block_sparse_moe.experts.3.fc_in.bias": "model-00004-of-00007.safetensors",
117
+ "transformer.h.12.block_sparse_moe.experts.3.fc_in.weight": "model-00004-of-00007.safetensors",
118
+ "transformer.h.12.block_sparse_moe.experts.3.fc_out.bias": "model-00004-of-00007.safetensors",
119
+ "transformer.h.12.block_sparse_moe.experts.3.fc_out.weight": "model-00004-of-00007.safetensors",
120
+ "transformer.h.12.block_sparse_moe.gate.weight": "model-00004-of-00007.safetensors",
121
+ "transformer.h.12.ln_1.bias": "model-00003-of-00007.safetensors",
122
+ "transformer.h.12.ln_1.weight": "model-00003-of-00007.safetensors",
123
+ "transformer.h.13.attn.k_proj.weight": "model-00004-of-00007.safetensors",
124
+ "transformer.h.13.attn.out_proj.weight": "model-00004-of-00007.safetensors",
125
+ "transformer.h.13.attn.q_proj.weight": "model-00004-of-00007.safetensors",
126
+ "transformer.h.13.attn.v_proj.weight": "model-00004-of-00007.safetensors",
127
+ "transformer.h.13.block_sparse_moe.experts.0.fc_in.bias": "model-00004-of-00007.safetensors",
128
+ "transformer.h.13.block_sparse_moe.experts.0.fc_in.weight": "model-00004-of-00007.safetensors",
129
+ "transformer.h.13.block_sparse_moe.experts.0.fc_out.bias": "model-00004-of-00007.safetensors",
130
+ "transformer.h.13.block_sparse_moe.experts.0.fc_out.weight": "model-00004-of-00007.safetensors",
131
+ "transformer.h.13.block_sparse_moe.experts.1.fc_in.bias": "model-00004-of-00007.safetensors",
132
+ "transformer.h.13.block_sparse_moe.experts.1.fc_in.weight": "model-00004-of-00007.safetensors",
133
+ "transformer.h.13.block_sparse_moe.experts.1.fc_out.bias": "model-00004-of-00007.safetensors",
134
+ "transformer.h.13.block_sparse_moe.experts.1.fc_out.weight": "model-00004-of-00007.safetensors",
135
+ "transformer.h.13.block_sparse_moe.experts.2.fc_in.bias": "model-00004-of-00007.safetensors",
136
+ "transformer.h.13.block_sparse_moe.experts.2.fc_in.weight": "model-00004-of-00007.safetensors",
137
+ "transformer.h.13.block_sparse_moe.experts.2.fc_out.bias": "model-00004-of-00007.safetensors",
138
+ "transformer.h.13.block_sparse_moe.experts.2.fc_out.weight": "model-00004-of-00007.safetensors",
139
+ "transformer.h.13.block_sparse_moe.experts.3.fc_in.bias": "model-00004-of-00007.safetensors",
140
+ "transformer.h.13.block_sparse_moe.experts.3.fc_in.weight": "model-00004-of-00007.safetensors",
141
+ "transformer.h.13.block_sparse_moe.experts.3.fc_out.bias": "model-00004-of-00007.safetensors",
142
+ "transformer.h.13.block_sparse_moe.experts.3.fc_out.weight": "model-00004-of-00007.safetensors",
143
+ "transformer.h.13.block_sparse_moe.gate.weight": "model-00004-of-00007.safetensors",
144
+ "transformer.h.13.ln_1.bias": "model-00004-of-00007.safetensors",
145
+ "transformer.h.13.ln_1.weight": "model-00004-of-00007.safetensors",
146
+ "transformer.h.14.attn.k_proj.weight": "model-00004-of-00007.safetensors",
147
+ "transformer.h.14.attn.out_proj.weight": "model-00004-of-00007.safetensors",
148
+ "transformer.h.14.attn.q_proj.weight": "model-00004-of-00007.safetensors",
149
+ "transformer.h.14.attn.v_proj.weight": "model-00004-of-00007.safetensors",
150
+ "transformer.h.14.block_sparse_moe.experts.0.fc_in.bias": "model-00004-of-00007.safetensors",
151
+ "transformer.h.14.block_sparse_moe.experts.0.fc_in.weight": "model-00004-of-00007.safetensors",
152
+ "transformer.h.14.block_sparse_moe.experts.0.fc_out.bias": "model-00004-of-00007.safetensors",
153
+ "transformer.h.14.block_sparse_moe.experts.0.fc_out.weight": "model-00004-of-00007.safetensors",
154
+ "transformer.h.14.block_sparse_moe.experts.1.fc_in.bias": "model-00004-of-00007.safetensors",
155
+ "transformer.h.14.block_sparse_moe.experts.1.fc_in.weight": "model-00004-of-00007.safetensors",
156
+ "transformer.h.14.block_sparse_moe.experts.1.fc_out.bias": "model-00004-of-00007.safetensors",
157
+ "transformer.h.14.block_sparse_moe.experts.1.fc_out.weight": "model-00004-of-00007.safetensors",
158
+ "transformer.h.14.block_sparse_moe.experts.2.fc_in.bias": "model-00004-of-00007.safetensors",
159
+ "transformer.h.14.block_sparse_moe.experts.2.fc_in.weight": "model-00004-of-00007.safetensors",
160
+ "transformer.h.14.block_sparse_moe.experts.2.fc_out.bias": "model-00004-of-00007.safetensors",
161
+ "transformer.h.14.block_sparse_moe.experts.2.fc_out.weight": "model-00004-of-00007.safetensors",
162
+ "transformer.h.14.block_sparse_moe.experts.3.fc_in.bias": "model-00004-of-00007.safetensors",
163
+ "transformer.h.14.block_sparse_moe.experts.3.fc_in.weight": "model-00004-of-00007.safetensors",
164
+ "transformer.h.14.block_sparse_moe.experts.3.fc_out.bias": "model-00004-of-00007.safetensors",
165
+ "transformer.h.14.block_sparse_moe.experts.3.fc_out.weight": "model-00004-of-00007.safetensors",
166
+ "transformer.h.14.block_sparse_moe.gate.weight": "model-00004-of-00007.safetensors",
167
+ "transformer.h.14.ln_1.bias": "model-00004-of-00007.safetensors",
168
+ "transformer.h.14.ln_1.weight": "model-00004-of-00007.safetensors",
169
+ "transformer.h.15.attn.k_proj.weight": "model-00004-of-00007.safetensors",
170
+ "transformer.h.15.attn.out_proj.weight": "model-00004-of-00007.safetensors",
171
+ "transformer.h.15.attn.q_proj.weight": "model-00004-of-00007.safetensors",
172
+ "transformer.h.15.attn.v_proj.weight": "model-00004-of-00007.safetensors",
173
+ "transformer.h.15.block_sparse_moe.experts.0.fc_in.bias": "model-00004-of-00007.safetensors",
174
+ "transformer.h.15.block_sparse_moe.experts.0.fc_in.weight": "model-00004-of-00007.safetensors",
175
+ "transformer.h.15.block_sparse_moe.experts.0.fc_out.bias": "model-00004-of-00007.safetensors",
176
+ "transformer.h.15.block_sparse_moe.experts.0.fc_out.weight": "model-00004-of-00007.safetensors",
177
+ "transformer.h.15.block_sparse_moe.experts.1.fc_in.bias": "model-00004-of-00007.safetensors",
178
+ "transformer.h.15.block_sparse_moe.experts.1.fc_in.weight": "model-00004-of-00007.safetensors",
179
+ "transformer.h.15.block_sparse_moe.experts.1.fc_out.bias": "model-00004-of-00007.safetensors",
180
+ "transformer.h.15.block_sparse_moe.experts.1.fc_out.weight": "model-00004-of-00007.safetensors",
181
+ "transformer.h.15.block_sparse_moe.experts.2.fc_in.bias": "model-00004-of-00007.safetensors",
182
+ "transformer.h.15.block_sparse_moe.experts.2.fc_in.weight": "model-00004-of-00007.safetensors",
183
+ "transformer.h.15.block_sparse_moe.experts.2.fc_out.bias": "model-00004-of-00007.safetensors",
184
+ "transformer.h.15.block_sparse_moe.experts.2.fc_out.weight": "model-00004-of-00007.safetensors",
185
+ "transformer.h.15.block_sparse_moe.experts.3.fc_in.bias": "model-00004-of-00007.safetensors",
186
+ "transformer.h.15.block_sparse_moe.experts.3.fc_in.weight": "model-00004-of-00007.safetensors",
187
+ "transformer.h.15.block_sparse_moe.experts.3.fc_out.bias": "model-00004-of-00007.safetensors",
188
+ "transformer.h.15.block_sparse_moe.experts.3.fc_out.weight": "model-00004-of-00007.safetensors",
189
+ "transformer.h.15.block_sparse_moe.gate.weight": "model-00004-of-00007.safetensors",
190
+ "transformer.h.15.ln_1.bias": "model-00004-of-00007.safetensors",
191
+ "transformer.h.15.ln_1.weight": "model-00004-of-00007.safetensors",
192
+ "transformer.h.16.attn.k_proj.weight": "model-00004-of-00007.safetensors",
193
+ "transformer.h.16.attn.out_proj.weight": "model-00004-of-00007.safetensors",
194
+ "transformer.h.16.attn.q_proj.weight": "model-00004-of-00007.safetensors",
195
+ "transformer.h.16.attn.v_proj.weight": "model-00004-of-00007.safetensors",
196
+ "transformer.h.16.block_sparse_moe.experts.0.fc_in.bias": "model-00005-of-00007.safetensors",
197
+ "transformer.h.16.block_sparse_moe.experts.0.fc_in.weight": "model-00005-of-00007.safetensors",
198
+ "transformer.h.16.block_sparse_moe.experts.0.fc_out.bias": "model-00005-of-00007.safetensors",
199
+ "transformer.h.16.block_sparse_moe.experts.0.fc_out.weight": "model-00005-of-00007.safetensors",
200
+ "transformer.h.16.block_sparse_moe.experts.1.fc_in.bias": "model-00005-of-00007.safetensors",
201
+ "transformer.h.16.block_sparse_moe.experts.1.fc_in.weight": "model-00005-of-00007.safetensors",
202
+ "transformer.h.16.block_sparse_moe.experts.1.fc_out.bias": "model-00005-of-00007.safetensors",
203
+ "transformer.h.16.block_sparse_moe.experts.1.fc_out.weight": "model-00005-of-00007.safetensors",
204
+ "transformer.h.16.block_sparse_moe.experts.2.fc_in.bias": "model-00005-of-00007.safetensors",
205
+ "transformer.h.16.block_sparse_moe.experts.2.fc_in.weight": "model-00005-of-00007.safetensors",
206
+ "transformer.h.16.block_sparse_moe.experts.2.fc_out.bias": "model-00005-of-00007.safetensors",
207
+ "transformer.h.16.block_sparse_moe.experts.2.fc_out.weight": "model-00005-of-00007.safetensors",
208
+ "transformer.h.16.block_sparse_moe.experts.3.fc_in.bias": "model-00005-of-00007.safetensors",
209
+ "transformer.h.16.block_sparse_moe.experts.3.fc_in.weight": "model-00005-of-00007.safetensors",
210
+ "transformer.h.16.block_sparse_moe.experts.3.fc_out.bias": "model-00005-of-00007.safetensors",
211
+ "transformer.h.16.block_sparse_moe.experts.3.fc_out.weight": "model-00005-of-00007.safetensors",
212
+ "transformer.h.16.block_sparse_moe.gate.weight": "model-00004-of-00007.safetensors",
213
+ "transformer.h.16.ln_1.bias": "model-00004-of-00007.safetensors",
214
+ "transformer.h.16.ln_1.weight": "model-00004-of-00007.safetensors",
215
+ "transformer.h.17.attn.k_proj.weight": "model-00005-of-00007.safetensors",
216
+ "transformer.h.17.attn.out_proj.weight": "model-00005-of-00007.safetensors",
217
+ "transformer.h.17.attn.q_proj.weight": "model-00005-of-00007.safetensors",
218
+ "transformer.h.17.attn.v_proj.weight": "model-00005-of-00007.safetensors",
219
+ "transformer.h.17.block_sparse_moe.experts.0.fc_in.bias": "model-00005-of-00007.safetensors",
220
+ "transformer.h.17.block_sparse_moe.experts.0.fc_in.weight": "model-00005-of-00007.safetensors",
221
+ "transformer.h.17.block_sparse_moe.experts.0.fc_out.bias": "model-00005-of-00007.safetensors",
222
+ "transformer.h.17.block_sparse_moe.experts.0.fc_out.weight": "model-00005-of-00007.safetensors",
223
+ "transformer.h.17.block_sparse_moe.experts.1.fc_in.bias": "model-00005-of-00007.safetensors",
224
+ "transformer.h.17.block_sparse_moe.experts.1.fc_in.weight": "model-00005-of-00007.safetensors",
225
+ "transformer.h.17.block_sparse_moe.experts.1.fc_out.bias": "model-00005-of-00007.safetensors",
226
+ "transformer.h.17.block_sparse_moe.experts.1.fc_out.weight": "model-00005-of-00007.safetensors",
227
+ "transformer.h.17.block_sparse_moe.experts.2.fc_in.bias": "model-00005-of-00007.safetensors",
228
+ "transformer.h.17.block_sparse_moe.experts.2.fc_in.weight": "model-00005-of-00007.safetensors",
229
+ "transformer.h.17.block_sparse_moe.experts.2.fc_out.bias": "model-00005-of-00007.safetensors",
230
+ "transformer.h.17.block_sparse_moe.experts.2.fc_out.weight": "model-00005-of-00007.safetensors",
231
+ "transformer.h.17.block_sparse_moe.experts.3.fc_in.bias": "model-00005-of-00007.safetensors",
232
+ "transformer.h.17.block_sparse_moe.experts.3.fc_in.weight": "model-00005-of-00007.safetensors",
233
+ "transformer.h.17.block_sparse_moe.experts.3.fc_out.bias": "model-00005-of-00007.safetensors",
234
+ "transformer.h.17.block_sparse_moe.experts.3.fc_out.weight": "model-00005-of-00007.safetensors",
235
+ "transformer.h.17.block_sparse_moe.gate.weight": "model-00005-of-00007.safetensors",
236
+ "transformer.h.17.ln_1.bias": "model-00005-of-00007.safetensors",
237
+ "transformer.h.17.ln_1.weight": "model-00005-of-00007.safetensors",
238
+ "transformer.h.18.attn.k_proj.weight": "model-00005-of-00007.safetensors",
239
+ "transformer.h.18.attn.out_proj.weight": "model-00005-of-00007.safetensors",
240
+ "transformer.h.18.attn.q_proj.weight": "model-00005-of-00007.safetensors",
241
+ "transformer.h.18.attn.v_proj.weight": "model-00005-of-00007.safetensors",
242
+ "transformer.h.18.block_sparse_moe.experts.0.fc_in.bias": "model-00005-of-00007.safetensors",
243
+ "transformer.h.18.block_sparse_moe.experts.0.fc_in.weight": "model-00005-of-00007.safetensors",
244
+ "transformer.h.18.block_sparse_moe.experts.0.fc_out.bias": "model-00005-of-00007.safetensors",
245
+ "transformer.h.18.block_sparse_moe.experts.0.fc_out.weight": "model-00005-of-00007.safetensors",
246
+ "transformer.h.18.block_sparse_moe.experts.1.fc_in.bias": "model-00005-of-00007.safetensors",
247
+ "transformer.h.18.block_sparse_moe.experts.1.fc_in.weight": "model-00005-of-00007.safetensors",
248
+ "transformer.h.18.block_sparse_moe.experts.1.fc_out.bias": "model-00005-of-00007.safetensors",
249
+ "transformer.h.18.block_sparse_moe.experts.1.fc_out.weight": "model-00005-of-00007.safetensors",
250
+ "transformer.h.18.block_sparse_moe.experts.2.fc_in.bias": "model-00005-of-00007.safetensors",
251
+ "transformer.h.18.block_sparse_moe.experts.2.fc_in.weight": "model-00005-of-00007.safetensors",
252
+ "transformer.h.18.block_sparse_moe.experts.2.fc_out.bias": "model-00005-of-00007.safetensors",
253
+ "transformer.h.18.block_sparse_moe.experts.2.fc_out.weight": "model-00005-of-00007.safetensors",
254
+ "transformer.h.18.block_sparse_moe.experts.3.fc_in.bias": "model-00005-of-00007.safetensors",
255
+ "transformer.h.18.block_sparse_moe.experts.3.fc_in.weight": "model-00005-of-00007.safetensors",
256
+ "transformer.h.18.block_sparse_moe.experts.3.fc_out.bias": "model-00005-of-00007.safetensors",
257
+ "transformer.h.18.block_sparse_moe.experts.3.fc_out.weight": "model-00005-of-00007.safetensors",
258
+ "transformer.h.18.block_sparse_moe.gate.weight": "model-00005-of-00007.safetensors",
259
+ "transformer.h.18.ln_1.bias": "model-00005-of-00007.safetensors",
260
+ "transformer.h.18.ln_1.weight": "model-00005-of-00007.safetensors",
261
+ "transformer.h.19.attn.k_proj.weight": "model-00005-of-00007.safetensors",
262
+ "transformer.h.19.attn.out_proj.weight": "model-00005-of-00007.safetensors",
263
+ "transformer.h.19.attn.q_proj.weight": "model-00005-of-00007.safetensors",
264
+ "transformer.h.19.attn.v_proj.weight": "model-00005-of-00007.safetensors",
265
+ "transformer.h.19.block_sparse_moe.experts.0.fc_in.bias": "model-00005-of-00007.safetensors",
266
+ "transformer.h.19.block_sparse_moe.experts.0.fc_in.weight": "model-00005-of-00007.safetensors",
267
+ "transformer.h.19.block_sparse_moe.experts.0.fc_out.bias": "model-00005-of-00007.safetensors",
268
+ "transformer.h.19.block_sparse_moe.experts.0.fc_out.weight": "model-00005-of-00007.safetensors",
269
+ "transformer.h.19.block_sparse_moe.experts.1.fc_in.bias": "model-00005-of-00007.safetensors",
270
+ "transformer.h.19.block_sparse_moe.experts.1.fc_in.weight": "model-00005-of-00007.safetensors",
271
+ "transformer.h.19.block_sparse_moe.experts.1.fc_out.bias": "model-00005-of-00007.safetensors",
272
+ "transformer.h.19.block_sparse_moe.experts.1.fc_out.weight": "model-00005-of-00007.safetensors",
273
+ "transformer.h.19.block_sparse_moe.experts.2.fc_in.bias": "model-00005-of-00007.safetensors",
274
+ "transformer.h.19.block_sparse_moe.experts.2.fc_in.weight": "model-00005-of-00007.safetensors",
275
+ "transformer.h.19.block_sparse_moe.experts.2.fc_out.bias": "model-00005-of-00007.safetensors",
276
+ "transformer.h.19.block_sparse_moe.experts.2.fc_out.weight": "model-00005-of-00007.safetensors",
277
+ "transformer.h.19.block_sparse_moe.experts.3.fc_in.bias": "model-00005-of-00007.safetensors",
278
+ "transformer.h.19.block_sparse_moe.experts.3.fc_in.weight": "model-00005-of-00007.safetensors",
279
+ "transformer.h.19.block_sparse_moe.experts.3.fc_out.bias": "model-00005-of-00007.safetensors",
280
+ "transformer.h.19.block_sparse_moe.experts.3.fc_out.weight": "model-00005-of-00007.safetensors",
281
+ "transformer.h.19.block_sparse_moe.gate.weight": "model-00005-of-00007.safetensors",
282
+ "transformer.h.19.ln_1.bias": "model-00005-of-00007.safetensors",
283
+ "transformer.h.19.ln_1.weight": "model-00005-of-00007.safetensors",
284
+ "transformer.h.2.attn.k_proj.weight": "model-00001-of-00007.safetensors",
285
+ "transformer.h.2.attn.out_proj.weight": "model-00001-of-00007.safetensors",
286
+ "transformer.h.2.attn.q_proj.weight": "model-00001-of-00007.safetensors",
287
+ "transformer.h.2.attn.v_proj.weight": "model-00001-of-00007.safetensors",
288
+ "transformer.h.2.block_sparse_moe.experts.0.fc_in.bias": "model-00001-of-00007.safetensors",
289
+ "transformer.h.2.block_sparse_moe.experts.0.fc_in.weight": "model-00001-of-00007.safetensors",
290
+ "transformer.h.2.block_sparse_moe.experts.0.fc_out.bias": "model-00001-of-00007.safetensors",
291
+ "transformer.h.2.block_sparse_moe.experts.0.fc_out.weight": "model-00001-of-00007.safetensors",
292
+ "transformer.h.2.block_sparse_moe.experts.1.fc_in.bias": "model-00001-of-00007.safetensors",
293
+ "transformer.h.2.block_sparse_moe.experts.1.fc_in.weight": "model-00001-of-00007.safetensors",
294
+ "transformer.h.2.block_sparse_moe.experts.1.fc_out.bias": "model-00001-of-00007.safetensors",
295
+ "transformer.h.2.block_sparse_moe.experts.1.fc_out.weight": "model-00001-of-00007.safetensors",
296
+ "transformer.h.2.block_sparse_moe.experts.2.fc_in.bias": "model-00001-of-00007.safetensors",
297
+ "transformer.h.2.block_sparse_moe.experts.2.fc_in.weight": "model-00001-of-00007.safetensors",
298
+ "transformer.h.2.block_sparse_moe.experts.2.fc_out.bias": "model-00001-of-00007.safetensors",
299
+ "transformer.h.2.block_sparse_moe.experts.2.fc_out.weight": "model-00001-of-00007.safetensors",
300
+ "transformer.h.2.block_sparse_moe.experts.3.fc_in.bias": "model-00001-of-00007.safetensors",
301
+ "transformer.h.2.block_sparse_moe.experts.3.fc_in.weight": "model-00001-of-00007.safetensors",
302
+ "transformer.h.2.block_sparse_moe.experts.3.fc_out.bias": "model-00001-of-00007.safetensors",
303
+ "transformer.h.2.block_sparse_moe.experts.3.fc_out.weight": "model-00001-of-00007.safetensors",
304
+ "transformer.h.2.block_sparse_moe.gate.weight": "model-00001-of-00007.safetensors",
305
+ "transformer.h.2.ln_1.bias": "model-00001-of-00007.safetensors",
306
+ "transformer.h.2.ln_1.weight": "model-00001-of-00007.safetensors",
307
+ "transformer.h.20.attn.k_proj.weight": "model-00005-of-00007.safetensors",
308
+ "transformer.h.20.attn.out_proj.weight": "model-00005-of-00007.safetensors",
309
+ "transformer.h.20.attn.q_proj.weight": "model-00005-of-00007.safetensors",
310
+ "transformer.h.20.attn.v_proj.weight": "model-00005-of-00007.safetensors",
311
+ "transformer.h.20.block_sparse_moe.experts.0.fc_in.bias": "model-00005-of-00007.safetensors",
312
+ "transformer.h.20.block_sparse_moe.experts.0.fc_in.weight": "model-00005-of-00007.safetensors",
313
+ "transformer.h.20.block_sparse_moe.experts.0.fc_out.bias": "model-00006-of-00007.safetensors",
314
+ "transformer.h.20.block_sparse_moe.experts.0.fc_out.weight": "model-00006-of-00007.safetensors",
315
+ "transformer.h.20.block_sparse_moe.experts.1.fc_in.bias": "model-00006-of-00007.safetensors",
316
+ "transformer.h.20.block_sparse_moe.experts.1.fc_in.weight": "model-00006-of-00007.safetensors",
317
+ "transformer.h.20.block_sparse_moe.experts.1.fc_out.bias": "model-00006-of-00007.safetensors",
318
+ "transformer.h.20.block_sparse_moe.experts.1.fc_out.weight": "model-00006-of-00007.safetensors",
319
+ "transformer.h.20.block_sparse_moe.experts.2.fc_in.bias": "model-00006-of-00007.safetensors",
320
+ "transformer.h.20.block_sparse_moe.experts.2.fc_in.weight": "model-00006-of-00007.safetensors",
321
+ "transformer.h.20.block_sparse_moe.experts.2.fc_out.bias": "model-00006-of-00007.safetensors",
322
+ "transformer.h.20.block_sparse_moe.experts.2.fc_out.weight": "model-00006-of-00007.safetensors",
323
+ "transformer.h.20.block_sparse_moe.experts.3.fc_in.bias": "model-00006-of-00007.safetensors",
324
+ "transformer.h.20.block_sparse_moe.experts.3.fc_in.weight": "model-00006-of-00007.safetensors",
325
+ "transformer.h.20.block_sparse_moe.experts.3.fc_out.bias": "model-00006-of-00007.safetensors",
326
+ "transformer.h.20.block_sparse_moe.experts.3.fc_out.weight": "model-00006-of-00007.safetensors",
327
+ "transformer.h.20.block_sparse_moe.gate.weight": "model-00005-of-00007.safetensors",
328
+ "transformer.h.20.ln_1.bias": "model-00005-of-00007.safetensors",
329
+ "transformer.h.20.ln_1.weight": "model-00005-of-00007.safetensors",
330
+ "transformer.h.21.attn.k_proj.weight": "model-00006-of-00007.safetensors",
331
+ "transformer.h.21.attn.out_proj.weight": "model-00006-of-00007.safetensors",
332
+ "transformer.h.21.attn.q_proj.weight": "model-00006-of-00007.safetensors",
333
+ "transformer.h.21.attn.v_proj.weight": "model-00006-of-00007.safetensors",
334
+ "transformer.h.21.block_sparse_moe.experts.0.fc_in.bias": "model-00006-of-00007.safetensors",
335
+ "transformer.h.21.block_sparse_moe.experts.0.fc_in.weight": "model-00006-of-00007.safetensors",
336
+ "transformer.h.21.block_sparse_moe.experts.0.fc_out.bias": "model-00006-of-00007.safetensors",
337
+ "transformer.h.21.block_sparse_moe.experts.0.fc_out.weight": "model-00006-of-00007.safetensors",
338
+ "transformer.h.21.block_sparse_moe.experts.1.fc_in.bias": "model-00006-of-00007.safetensors",
339
+ "transformer.h.21.block_sparse_moe.experts.1.fc_in.weight": "model-00006-of-00007.safetensors",
340
+ "transformer.h.21.block_sparse_moe.experts.1.fc_out.bias": "model-00006-of-00007.safetensors",
341
+ "transformer.h.21.block_sparse_moe.experts.1.fc_out.weight": "model-00006-of-00007.safetensors",
342
+ "transformer.h.21.block_sparse_moe.experts.2.fc_in.bias": "model-00006-of-00007.safetensors",
343
+ "transformer.h.21.block_sparse_moe.experts.2.fc_in.weight": "model-00006-of-00007.safetensors",
344
+ "transformer.h.21.block_sparse_moe.experts.2.fc_out.bias": "model-00006-of-00007.safetensors",
345
+ "transformer.h.21.block_sparse_moe.experts.2.fc_out.weight": "model-00006-of-00007.safetensors",
346
+ "transformer.h.21.block_sparse_moe.experts.3.fc_in.bias": "model-00006-of-00007.safetensors",
347
+ "transformer.h.21.block_sparse_moe.experts.3.fc_in.weight": "model-00006-of-00007.safetensors",
348
+ "transformer.h.21.block_sparse_moe.experts.3.fc_out.bias": "model-00006-of-00007.safetensors",
349
+ "transformer.h.21.block_sparse_moe.experts.3.fc_out.weight": "model-00006-of-00007.safetensors",
350
+ "transformer.h.21.block_sparse_moe.gate.weight": "model-00006-of-00007.safetensors",
351
+ "transformer.h.21.ln_1.bias": "model-00006-of-00007.safetensors",
352
+ "transformer.h.21.ln_1.weight": "model-00006-of-00007.safetensors",
353
+ "transformer.h.22.attn.k_proj.weight": "model-00006-of-00007.safetensors",
354
+ "transformer.h.22.attn.out_proj.weight": "model-00006-of-00007.safetensors",
355
+ "transformer.h.22.attn.q_proj.weight": "model-00006-of-00007.safetensors",
356
+ "transformer.h.22.attn.v_proj.weight": "model-00006-of-00007.safetensors",
357
+ "transformer.h.22.block_sparse_moe.experts.0.fc_in.bias": "model-00006-of-00007.safetensors",
358
+ "transformer.h.22.block_sparse_moe.experts.0.fc_in.weight": "model-00006-of-00007.safetensors",
359
+ "transformer.h.22.block_sparse_moe.experts.0.fc_out.bias": "model-00006-of-00007.safetensors",
360
+ "transformer.h.22.block_sparse_moe.experts.0.fc_out.weight": "model-00006-of-00007.safetensors",
361
+ "transformer.h.22.block_sparse_moe.experts.1.fc_in.bias": "model-00006-of-00007.safetensors",
362
+ "transformer.h.22.block_sparse_moe.experts.1.fc_in.weight": "model-00006-of-00007.safetensors",
363
+ "transformer.h.22.block_sparse_moe.experts.1.fc_out.bias": "model-00006-of-00007.safetensors",
364
+ "transformer.h.22.block_sparse_moe.experts.1.fc_out.weight": "model-00006-of-00007.safetensors",
365
+ "transformer.h.22.block_sparse_moe.experts.2.fc_in.bias": "model-00006-of-00007.safetensors",
366
+ "transformer.h.22.block_sparse_moe.experts.2.fc_in.weight": "model-00006-of-00007.safetensors",
367
+ "transformer.h.22.block_sparse_moe.experts.2.fc_out.bias": "model-00006-of-00007.safetensors",
368
+ "transformer.h.22.block_sparse_moe.experts.2.fc_out.weight": "model-00006-of-00007.safetensors",
369
+ "transformer.h.22.block_sparse_moe.experts.3.fc_in.bias": "model-00006-of-00007.safetensors",
370
+ "transformer.h.22.block_sparse_moe.experts.3.fc_in.weight": "model-00006-of-00007.safetensors",
371
+ "transformer.h.22.block_sparse_moe.experts.3.fc_out.bias": "model-00006-of-00007.safetensors",
372
+ "transformer.h.22.block_sparse_moe.experts.3.fc_out.weight": "model-00006-of-00007.safetensors",
373
+ "transformer.h.22.block_sparse_moe.gate.weight": "model-00006-of-00007.safetensors",
374
+ "transformer.h.22.ln_1.bias": "model-00006-of-00007.safetensors",
375
+ "transformer.h.22.ln_1.weight": "model-00006-of-00007.safetensors",
376
+ "transformer.h.23.attn.k_proj.weight": "model-00006-of-00007.safetensors",
377
+ "transformer.h.23.attn.out_proj.weight": "model-00006-of-00007.safetensors",
378
+ "transformer.h.23.attn.q_proj.weight": "model-00006-of-00007.safetensors",
379
+ "transformer.h.23.attn.v_proj.weight": "model-00006-of-00007.safetensors",
380
+ "transformer.h.23.block_sparse_moe.experts.0.fc_in.bias": "model-00006-of-00007.safetensors",
381
+ "transformer.h.23.block_sparse_moe.experts.0.fc_in.weight": "model-00006-of-00007.safetensors",
382
+ "transformer.h.23.block_sparse_moe.experts.0.fc_out.bias": "model-00006-of-00007.safetensors",
383
+ "transformer.h.23.block_sparse_moe.experts.0.fc_out.weight": "model-00006-of-00007.safetensors",
384
+ "transformer.h.23.block_sparse_moe.experts.1.fc_in.bias": "model-00006-of-00007.safetensors",
385
+ "transformer.h.23.block_sparse_moe.experts.1.fc_in.weight": "model-00006-of-00007.safetensors",
386
+ "transformer.h.23.block_sparse_moe.experts.1.fc_out.bias": "model-00006-of-00007.safetensors",
387
+ "transformer.h.23.block_sparse_moe.experts.1.fc_out.weight": "model-00006-of-00007.safetensors",
388
+ "transformer.h.23.block_sparse_moe.experts.2.fc_in.bias": "model-00006-of-00007.safetensors",
389
+ "transformer.h.23.block_sparse_moe.experts.2.fc_in.weight": "model-00006-of-00007.safetensors",
390
+ "transformer.h.23.block_sparse_moe.experts.2.fc_out.bias": "model-00006-of-00007.safetensors",
391
+ "transformer.h.23.block_sparse_moe.experts.2.fc_out.weight": "model-00006-of-00007.safetensors",
392
+ "transformer.h.23.block_sparse_moe.experts.3.fc_in.bias": "model-00006-of-00007.safetensors",
393
+ "transformer.h.23.block_sparse_moe.experts.3.fc_in.weight": "model-00006-of-00007.safetensors",
394
+ "transformer.h.23.block_sparse_moe.experts.3.fc_out.bias": "model-00006-of-00007.safetensors",
395
+ "transformer.h.23.block_sparse_moe.experts.3.fc_out.weight": "model-00006-of-00007.safetensors",
396
+ "transformer.h.23.block_sparse_moe.gate.weight": "model-00006-of-00007.safetensors",
397
+ "transformer.h.23.ln_1.bias": "model-00006-of-00007.safetensors",
398
+ "transformer.h.23.ln_1.weight": "model-00006-of-00007.safetensors",
399
+ "transformer.h.24.attn.k_proj.weight": "model-00006-of-00007.safetensors",
400
+ "transformer.h.24.attn.out_proj.weight": "model-00006-of-00007.safetensors",
401
+ "transformer.h.24.attn.q_proj.weight": "model-00006-of-00007.safetensors",
402
+ "transformer.h.24.attn.v_proj.weight": "model-00006-of-00007.safetensors",
403
+ "transformer.h.24.block_sparse_moe.experts.0.fc_in.bias": "model-00006-of-00007.safetensors",
404
+ "transformer.h.24.block_sparse_moe.experts.0.fc_in.weight": "model-00006-of-00007.safetensors",
405
+ "transformer.h.24.block_sparse_moe.experts.0.fc_out.bias": "model-00006-of-00007.safetensors",
406
+ "transformer.h.24.block_sparse_moe.experts.0.fc_out.weight": "model-00006-of-00007.safetensors",
407
+ "transformer.h.24.block_sparse_moe.experts.1.fc_in.bias": "model-00007-of-00007.safetensors",
408
+ "transformer.h.24.block_sparse_moe.experts.1.fc_in.weight": "model-00007-of-00007.safetensors",
409
+ "transformer.h.24.block_sparse_moe.experts.1.fc_out.bias": "model-00007-of-00007.safetensors",
410
+ "transformer.h.24.block_sparse_moe.experts.1.fc_out.weight": "model-00007-of-00007.safetensors",
411
+ "transformer.h.24.block_sparse_moe.experts.2.fc_in.bias": "model-00007-of-00007.safetensors",
412
+ "transformer.h.24.block_sparse_moe.experts.2.fc_in.weight": "model-00007-of-00007.safetensors",
413
+ "transformer.h.24.block_sparse_moe.experts.2.fc_out.bias": "model-00007-of-00007.safetensors",
414
+ "transformer.h.24.block_sparse_moe.experts.2.fc_out.weight": "model-00007-of-00007.safetensors",
415
+ "transformer.h.24.block_sparse_moe.experts.3.fc_in.bias": "model-00007-of-00007.safetensors",
416
+ "transformer.h.24.block_sparse_moe.experts.3.fc_in.weight": "model-00007-of-00007.safetensors",
417
+ "transformer.h.24.block_sparse_moe.experts.3.fc_out.bias": "model-00007-of-00007.safetensors",
418
+ "transformer.h.24.block_sparse_moe.experts.3.fc_out.weight": "model-00007-of-00007.safetensors",
419
+ "transformer.h.24.block_sparse_moe.gate.weight": "model-00006-of-00007.safetensors",
420
+ "transformer.h.24.ln_1.bias": "model-00006-of-00007.safetensors",
421
+ "transformer.h.24.ln_1.weight": "model-00006-of-00007.safetensors",
422
+ "transformer.h.25.attn.k_proj.weight": "model-00007-of-00007.safetensors",
423
+ "transformer.h.25.attn.out_proj.weight": "model-00007-of-00007.safetensors",
424
+ "transformer.h.25.attn.q_proj.weight": "model-00007-of-00007.safetensors",
425
+ "transformer.h.25.attn.v_proj.weight": "model-00007-of-00007.safetensors",
426
+ "transformer.h.25.block_sparse_moe.experts.0.fc_in.bias": "model-00007-of-00007.safetensors",
427
+ "transformer.h.25.block_sparse_moe.experts.0.fc_in.weight": "model-00007-of-00007.safetensors",
428
+ "transformer.h.25.block_sparse_moe.experts.0.fc_out.bias": "model-00007-of-00007.safetensors",
429
+ "transformer.h.25.block_sparse_moe.experts.0.fc_out.weight": "model-00007-of-00007.safetensors",
430
+ "transformer.h.25.block_sparse_moe.experts.1.fc_in.bias": "model-00007-of-00007.safetensors",
431
+ "transformer.h.25.block_sparse_moe.experts.1.fc_in.weight": "model-00007-of-00007.safetensors",
432
+ "transformer.h.25.block_sparse_moe.experts.1.fc_out.bias": "model-00007-of-00007.safetensors",
433
+ "transformer.h.25.block_sparse_moe.experts.1.fc_out.weight": "model-00007-of-00007.safetensors",
434
+ "transformer.h.25.block_sparse_moe.experts.2.fc_in.bias": "model-00007-of-00007.safetensors",
435
+ "transformer.h.25.block_sparse_moe.experts.2.fc_in.weight": "model-00007-of-00007.safetensors",
436
+ "transformer.h.25.block_sparse_moe.experts.2.fc_out.bias": "model-00007-of-00007.safetensors",
437
+ "transformer.h.25.block_sparse_moe.experts.2.fc_out.weight": "model-00007-of-00007.safetensors",
438
+ "transformer.h.25.block_sparse_moe.experts.3.fc_in.bias": "model-00007-of-00007.safetensors",
439
+ "transformer.h.25.block_sparse_moe.experts.3.fc_in.weight": "model-00007-of-00007.safetensors",
440
+ "transformer.h.25.block_sparse_moe.experts.3.fc_out.bias": "model-00007-of-00007.safetensors",
441
+ "transformer.h.25.block_sparse_moe.experts.3.fc_out.weight": "model-00007-of-00007.safetensors",
442
+ "transformer.h.25.block_sparse_moe.gate.weight": "model-00007-of-00007.safetensors",
443
+ "transformer.h.25.ln_1.bias": "model-00007-of-00007.safetensors",
444
+ "transformer.h.25.ln_1.weight": "model-00007-of-00007.safetensors",
445
+ "transformer.h.26.attn.k_proj.weight": "model-00007-of-00007.safetensors",
446
+ "transformer.h.26.attn.out_proj.weight": "model-00007-of-00007.safetensors",
447
+ "transformer.h.26.attn.q_proj.weight": "model-00007-of-00007.safetensors",
448
+ "transformer.h.26.attn.v_proj.weight": "model-00007-of-00007.safetensors",
449
+ "transformer.h.26.block_sparse_moe.experts.0.fc_in.bias": "model-00007-of-00007.safetensors",
450
+ "transformer.h.26.block_sparse_moe.experts.0.fc_in.weight": "model-00007-of-00007.safetensors",
451
+ "transformer.h.26.block_sparse_moe.experts.0.fc_out.bias": "model-00007-of-00007.safetensors",
452
+ "transformer.h.26.block_sparse_moe.experts.0.fc_out.weight": "model-00007-of-00007.safetensors",
453
+ "transformer.h.26.block_sparse_moe.experts.1.fc_in.bias": "model-00007-of-00007.safetensors",
454
+ "transformer.h.26.block_sparse_moe.experts.1.fc_in.weight": "model-00007-of-00007.safetensors",
455
+ "transformer.h.26.block_sparse_moe.experts.1.fc_out.bias": "model-00007-of-00007.safetensors",
456
+ "transformer.h.26.block_sparse_moe.experts.1.fc_out.weight": "model-00007-of-00007.safetensors",
457
+ "transformer.h.26.block_sparse_moe.experts.2.fc_in.bias": "model-00007-of-00007.safetensors",
458
+ "transformer.h.26.block_sparse_moe.experts.2.fc_in.weight": "model-00007-of-00007.safetensors",
459
+ "transformer.h.26.block_sparse_moe.experts.2.fc_out.bias": "model-00007-of-00007.safetensors",
460
+ "transformer.h.26.block_sparse_moe.experts.2.fc_out.weight": "model-00007-of-00007.safetensors",
461
+ "transformer.h.26.block_sparse_moe.experts.3.fc_in.bias": "model-00007-of-00007.safetensors",
462
+ "transformer.h.26.block_sparse_moe.experts.3.fc_in.weight": "model-00007-of-00007.safetensors",
463
+ "transformer.h.26.block_sparse_moe.experts.3.fc_out.bias": "model-00007-of-00007.safetensors",
464
+ "transformer.h.26.block_sparse_moe.experts.3.fc_out.weight": "model-00007-of-00007.safetensors",
465
+ "transformer.h.26.block_sparse_moe.gate.weight": "model-00007-of-00007.safetensors",
466
+ "transformer.h.26.ln_1.bias": "model-00007-of-00007.safetensors",
467
+ "transformer.h.26.ln_1.weight": "model-00007-of-00007.safetensors",
468
+ "transformer.h.27.attn.k_proj.weight": "model-00007-of-00007.safetensors",
469
+ "transformer.h.27.attn.out_proj.weight": "model-00007-of-00007.safetensors",
470
+ "transformer.h.27.attn.q_proj.weight": "model-00007-of-00007.safetensors",
471
+ "transformer.h.27.attn.v_proj.weight": "model-00007-of-00007.safetensors",
472
+ "transformer.h.27.block_sparse_moe.experts.0.fc_in.bias": "model-00007-of-00007.safetensors",
473
+ "transformer.h.27.block_sparse_moe.experts.0.fc_in.weight": "model-00007-of-00007.safetensors",
474
+ "transformer.h.27.block_sparse_moe.experts.0.fc_out.bias": "model-00007-of-00007.safetensors",
475
+ "transformer.h.27.block_sparse_moe.experts.0.fc_out.weight": "model-00007-of-00007.safetensors",
476
+ "transformer.h.27.block_sparse_moe.experts.1.fc_in.bias": "model-00007-of-00007.safetensors",
477
+ "transformer.h.27.block_sparse_moe.experts.1.fc_in.weight": "model-00007-of-00007.safetensors",
478
+ "transformer.h.27.block_sparse_moe.experts.1.fc_out.bias": "model-00007-of-00007.safetensors",
479
+ "transformer.h.27.block_sparse_moe.experts.1.fc_out.weight": "model-00007-of-00007.safetensors",
480
+ "transformer.h.27.block_sparse_moe.experts.2.fc_in.bias": "model-00007-of-00007.safetensors",
481
+ "transformer.h.27.block_sparse_moe.experts.2.fc_in.weight": "model-00007-of-00007.safetensors",
482
+ "transformer.h.27.block_sparse_moe.experts.2.fc_out.bias": "model-00007-of-00007.safetensors",
483
+ "transformer.h.27.block_sparse_moe.experts.2.fc_out.weight": "model-00007-of-00007.safetensors",
484
+ "transformer.h.27.block_sparse_moe.experts.3.fc_in.bias": "model-00007-of-00007.safetensors",
485
+ "transformer.h.27.block_sparse_moe.experts.3.fc_in.weight": "model-00007-of-00007.safetensors",
486
+ "transformer.h.27.block_sparse_moe.experts.3.fc_out.bias": "model-00007-of-00007.safetensors",
487
+ "transformer.h.27.block_sparse_moe.experts.3.fc_out.weight": "model-00007-of-00007.safetensors",
488
+ "transformer.h.27.block_sparse_moe.gate.weight": "model-00007-of-00007.safetensors",
489
+ "transformer.h.27.ln_1.bias": "model-00007-of-00007.safetensors",
490
+ "transformer.h.27.ln_1.weight": "model-00007-of-00007.safetensors",
491
+ "transformer.h.3.attn.k_proj.weight": "model-00001-of-00007.safetensors",
492
+ "transformer.h.3.attn.out_proj.weight": "model-00001-of-00007.safetensors",
493
+ "transformer.h.3.attn.q_proj.weight": "model-00001-of-00007.safetensors",
494
+ "transformer.h.3.attn.v_proj.weight": "model-00001-of-00007.safetensors",
495
+ "transformer.h.3.block_sparse_moe.experts.0.fc_in.bias": "model-00001-of-00007.safetensors",
496
+ "transformer.h.3.block_sparse_moe.experts.0.fc_in.weight": "model-00001-of-00007.safetensors",
497
+ "transformer.h.3.block_sparse_moe.experts.0.fc_out.bias": "model-00001-of-00007.safetensors",
498
+ "transformer.h.3.block_sparse_moe.experts.0.fc_out.weight": "model-00001-of-00007.safetensors",
499
+ "transformer.h.3.block_sparse_moe.experts.1.fc_in.bias": "model-00001-of-00007.safetensors",
500
+ "transformer.h.3.block_sparse_moe.experts.1.fc_in.weight": "model-00001-of-00007.safetensors",
501
+ "transformer.h.3.block_sparse_moe.experts.1.fc_out.bias": "model-00001-of-00007.safetensors",
502
+ "transformer.h.3.block_sparse_moe.experts.1.fc_out.weight": "model-00001-of-00007.safetensors",
503
+ "transformer.h.3.block_sparse_moe.experts.2.fc_in.bias": "model-00001-of-00007.safetensors",
504
+ "transformer.h.3.block_sparse_moe.experts.2.fc_in.weight": "model-00001-of-00007.safetensors",
505
+ "transformer.h.3.block_sparse_moe.experts.2.fc_out.bias": "model-00001-of-00007.safetensors",
506
+ "transformer.h.3.block_sparse_moe.experts.2.fc_out.weight": "model-00001-of-00007.safetensors",
507
+ "transformer.h.3.block_sparse_moe.experts.3.fc_in.bias": "model-00002-of-00007.safetensors",
508
+ "transformer.h.3.block_sparse_moe.experts.3.fc_in.weight": "model-00002-of-00007.safetensors",
509
+ "transformer.h.3.block_sparse_moe.experts.3.fc_out.bias": "model-00002-of-00007.safetensors",
510
+ "transformer.h.3.block_sparse_moe.experts.3.fc_out.weight": "model-00002-of-00007.safetensors",
511
+ "transformer.h.3.block_sparse_moe.gate.weight": "model-00001-of-00007.safetensors",
512
+ "transformer.h.3.ln_1.bias": "model-00001-of-00007.safetensors",
513
+ "transformer.h.3.ln_1.weight": "model-00001-of-00007.safetensors",
514
+ "transformer.h.4.attn.k_proj.weight": "model-00002-of-00007.safetensors",
515
+ "transformer.h.4.attn.out_proj.weight": "model-00002-of-00007.safetensors",
516
+ "transformer.h.4.attn.q_proj.weight": "model-00002-of-00007.safetensors",
517
+ "transformer.h.4.attn.v_proj.weight": "model-00002-of-00007.safetensors",
518
+ "transformer.h.4.block_sparse_moe.experts.0.fc_in.bias": "model-00002-of-00007.safetensors",
519
+ "transformer.h.4.block_sparse_moe.experts.0.fc_in.weight": "model-00002-of-00007.safetensors",
520
+ "transformer.h.4.block_sparse_moe.experts.0.fc_out.bias": "model-00002-of-00007.safetensors",
521
+ "transformer.h.4.block_sparse_moe.experts.0.fc_out.weight": "model-00002-of-00007.safetensors",
522
+ "transformer.h.4.block_sparse_moe.experts.1.fc_in.bias": "model-00002-of-00007.safetensors",
523
+ "transformer.h.4.block_sparse_moe.experts.1.fc_in.weight": "model-00002-of-00007.safetensors",
524
+ "transformer.h.4.block_sparse_moe.experts.1.fc_out.bias": "model-00002-of-00007.safetensors",
525
+ "transformer.h.4.block_sparse_moe.experts.1.fc_out.weight": "model-00002-of-00007.safetensors",
526
+ "transformer.h.4.block_sparse_moe.experts.2.fc_in.bias": "model-00002-of-00007.safetensors",
527
+ "transformer.h.4.block_sparse_moe.experts.2.fc_in.weight": "model-00002-of-00007.safetensors",
528
+ "transformer.h.4.block_sparse_moe.experts.2.fc_out.bias": "model-00002-of-00007.safetensors",
529
+ "transformer.h.4.block_sparse_moe.experts.2.fc_out.weight": "model-00002-of-00007.safetensors",
530
+ "transformer.h.4.block_sparse_moe.experts.3.fc_in.bias": "model-00002-of-00007.safetensors",
531
+ "transformer.h.4.block_sparse_moe.experts.3.fc_in.weight": "model-00002-of-00007.safetensors",
532
+ "transformer.h.4.block_sparse_moe.experts.3.fc_out.bias": "model-00002-of-00007.safetensors",
533
+ "transformer.h.4.block_sparse_moe.experts.3.fc_out.weight": "model-00002-of-00007.safetensors",
534
+ "transformer.h.4.block_sparse_moe.gate.weight": "model-00002-of-00007.safetensors",
535
+ "transformer.h.4.ln_1.bias": "model-00002-of-00007.safetensors",
536
+ "transformer.h.4.ln_1.weight": "model-00002-of-00007.safetensors",
537
+ "transformer.h.5.attn.k_proj.weight": "model-00002-of-00007.safetensors",
538
+ "transformer.h.5.attn.out_proj.weight": "model-00002-of-00007.safetensors",
539
+ "transformer.h.5.attn.q_proj.weight": "model-00002-of-00007.safetensors",
540
+ "transformer.h.5.attn.v_proj.weight": "model-00002-of-00007.safetensors",
541
+ "transformer.h.5.block_sparse_moe.experts.0.fc_in.bias": "model-00002-of-00007.safetensors",
542
+ "transformer.h.5.block_sparse_moe.experts.0.fc_in.weight": "model-00002-of-00007.safetensors",
543
+ "transformer.h.5.block_sparse_moe.experts.0.fc_out.bias": "model-00002-of-00007.safetensors",
544
+ "transformer.h.5.block_sparse_moe.experts.0.fc_out.weight": "model-00002-of-00007.safetensors",
545
+ "transformer.h.5.block_sparse_moe.experts.1.fc_in.bias": "model-00002-of-00007.safetensors",
546
+ "transformer.h.5.block_sparse_moe.experts.1.fc_in.weight": "model-00002-of-00007.safetensors",
547
+ "transformer.h.5.block_sparse_moe.experts.1.fc_out.bias": "model-00002-of-00007.safetensors",
548
+ "transformer.h.5.block_sparse_moe.experts.1.fc_out.weight": "model-00002-of-00007.safetensors",
549
+ "transformer.h.5.block_sparse_moe.experts.2.fc_in.bias": "model-00002-of-00007.safetensors",
550
+ "transformer.h.5.block_sparse_moe.experts.2.fc_in.weight": "model-00002-of-00007.safetensors",
551
+ "transformer.h.5.block_sparse_moe.experts.2.fc_out.bias": "model-00002-of-00007.safetensors",
552
+ "transformer.h.5.block_sparse_moe.experts.2.fc_out.weight": "model-00002-of-00007.safetensors",
553
+ "transformer.h.5.block_sparse_moe.experts.3.fc_in.bias": "model-00002-of-00007.safetensors",
554
+ "transformer.h.5.block_sparse_moe.experts.3.fc_in.weight": "model-00002-of-00007.safetensors",
555
+ "transformer.h.5.block_sparse_moe.experts.3.fc_out.bias": "model-00002-of-00007.safetensors",
556
+ "transformer.h.5.block_sparse_moe.experts.3.fc_out.weight": "model-00002-of-00007.safetensors",
557
+ "transformer.h.5.block_sparse_moe.gate.weight": "model-00002-of-00007.safetensors",
558
+ "transformer.h.5.ln_1.bias": "model-00002-of-00007.safetensors",
559
+ "transformer.h.5.ln_1.weight": "model-00002-of-00007.safetensors",
560
+ "transformer.h.6.attn.k_proj.weight": "model-00002-of-00007.safetensors",
561
+ "transformer.h.6.attn.out_proj.weight": "model-00002-of-00007.safetensors",
562
+ "transformer.h.6.attn.q_proj.weight": "model-00002-of-00007.safetensors",
563
+ "transformer.h.6.attn.v_proj.weight": "model-00002-of-00007.safetensors",
564
+ "transformer.h.6.block_sparse_moe.experts.0.fc_in.bias": "model-00002-of-00007.safetensors",
565
+ "transformer.h.6.block_sparse_moe.experts.0.fc_in.weight": "model-00002-of-00007.safetensors",
566
+ "transformer.h.6.block_sparse_moe.experts.0.fc_out.bias": "model-00002-of-00007.safetensors",
567
+ "transformer.h.6.block_sparse_moe.experts.0.fc_out.weight": "model-00002-of-00007.safetensors",
568
+ "transformer.h.6.block_sparse_moe.experts.1.fc_in.bias": "model-00002-of-00007.safetensors",
569
+ "transformer.h.6.block_sparse_moe.experts.1.fc_in.weight": "model-00002-of-00007.safetensors",
570
+ "transformer.h.6.block_sparse_moe.experts.1.fc_out.bias": "model-00002-of-00007.safetensors",
571
+ "transformer.h.6.block_sparse_moe.experts.1.fc_out.weight": "model-00002-of-00007.safetensors",
572
+ "transformer.h.6.block_sparse_moe.experts.2.fc_in.bias": "model-00002-of-00007.safetensors",
573
+ "transformer.h.6.block_sparse_moe.experts.2.fc_in.weight": "model-00002-of-00007.safetensors",
574
+ "transformer.h.6.block_sparse_moe.experts.2.fc_out.bias": "model-00002-of-00007.safetensors",
575
+ "transformer.h.6.block_sparse_moe.experts.2.fc_out.weight": "model-00002-of-00007.safetensors",
576
+ "transformer.h.6.block_sparse_moe.experts.3.fc_in.bias": "model-00002-of-00007.safetensors",
577
+ "transformer.h.6.block_sparse_moe.experts.3.fc_in.weight": "model-00002-of-00007.safetensors",
578
+ "transformer.h.6.block_sparse_moe.experts.3.fc_out.bias": "model-00002-of-00007.safetensors",
579
+ "transformer.h.6.block_sparse_moe.experts.3.fc_out.weight": "model-00002-of-00007.safetensors",
580
+ "transformer.h.6.block_sparse_moe.gate.weight": "model-00002-of-00007.safetensors",
581
+ "transformer.h.6.ln_1.bias": "model-00002-of-00007.safetensors",
582
+ "transformer.h.6.ln_1.weight": "model-00002-of-00007.safetensors",
583
+ "transformer.h.7.attn.k_proj.weight": "model-00002-of-00007.safetensors",
584
+ "transformer.h.7.attn.out_proj.weight": "model-00002-of-00007.safetensors",
585
+ "transformer.h.7.attn.q_proj.weight": "model-00002-of-00007.safetensors",
586
+ "transformer.h.7.attn.v_proj.weight": "model-00002-of-00007.safetensors",
587
+ "transformer.h.7.block_sparse_moe.experts.0.fc_in.bias": "model-00002-of-00007.safetensors",
588
+ "transformer.h.7.block_sparse_moe.experts.0.fc_in.weight": "model-00002-of-00007.safetensors",
589
+ "transformer.h.7.block_sparse_moe.experts.0.fc_out.bias": "model-00002-of-00007.safetensors",
590
+ "transformer.h.7.block_sparse_moe.experts.0.fc_out.weight": "model-00002-of-00007.safetensors",
591
+ "transformer.h.7.block_sparse_moe.experts.1.fc_in.bias": "model-00002-of-00007.safetensors",
592
+ "transformer.h.7.block_sparse_moe.experts.1.fc_in.weight": "model-00002-of-00007.safetensors",
593
+ "transformer.h.7.block_sparse_moe.experts.1.fc_out.bias": "model-00002-of-00007.safetensors",
594
+ "transformer.h.7.block_sparse_moe.experts.1.fc_out.weight": "model-00002-of-00007.safetensors",
595
+ "transformer.h.7.block_sparse_moe.experts.2.fc_in.bias": "model-00002-of-00007.safetensors",
596
+ "transformer.h.7.block_sparse_moe.experts.2.fc_in.weight": "model-00002-of-00007.safetensors",
597
+ "transformer.h.7.block_sparse_moe.experts.2.fc_out.bias": "model-00002-of-00007.safetensors",
598
+ "transformer.h.7.block_sparse_moe.experts.2.fc_out.weight": "model-00002-of-00007.safetensors",
599
+ "transformer.h.7.block_sparse_moe.experts.3.fc_in.bias": "model-00002-of-00007.safetensors",
600
+ "transformer.h.7.block_sparse_moe.experts.3.fc_in.weight": "model-00002-of-00007.safetensors",
601
+ "transformer.h.7.block_sparse_moe.experts.3.fc_out.bias": "model-00003-of-00007.safetensors",
602
+ "transformer.h.7.block_sparse_moe.experts.3.fc_out.weight": "model-00003-of-00007.safetensors",
603
+ "transformer.h.7.block_sparse_moe.gate.weight": "model-00002-of-00007.safetensors",
604
+ "transformer.h.7.ln_1.bias": "model-00002-of-00007.safetensors",
605
+ "transformer.h.7.ln_1.weight": "model-00002-of-00007.safetensors",
606
+ "transformer.h.8.attn.k_proj.weight": "model-00003-of-00007.safetensors",
607
+ "transformer.h.8.attn.out_proj.weight": "model-00003-of-00007.safetensors",
608
+ "transformer.h.8.attn.q_proj.weight": "model-00003-of-00007.safetensors",
609
+ "transformer.h.8.attn.v_proj.weight": "model-00003-of-00007.safetensors",
610
+ "transformer.h.8.block_sparse_moe.experts.0.fc_in.bias": "model-00003-of-00007.safetensors",
611
+ "transformer.h.8.block_sparse_moe.experts.0.fc_in.weight": "model-00003-of-00007.safetensors",
612
+ "transformer.h.8.block_sparse_moe.experts.0.fc_out.bias": "model-00003-of-00007.safetensors",
613
+ "transformer.h.8.block_sparse_moe.experts.0.fc_out.weight": "model-00003-of-00007.safetensors",
614
+ "transformer.h.8.block_sparse_moe.experts.1.fc_in.bias": "model-00003-of-00007.safetensors",
615
+ "transformer.h.8.block_sparse_moe.experts.1.fc_in.weight": "model-00003-of-00007.safetensors",
616
+ "transformer.h.8.block_sparse_moe.experts.1.fc_out.bias": "model-00003-of-00007.safetensors",
617
+ "transformer.h.8.block_sparse_moe.experts.1.fc_out.weight": "model-00003-of-00007.safetensors",
618
+ "transformer.h.8.block_sparse_moe.experts.2.fc_in.bias": "model-00003-of-00007.safetensors",
619
+ "transformer.h.8.block_sparse_moe.experts.2.fc_in.weight": "model-00003-of-00007.safetensors",
620
+ "transformer.h.8.block_sparse_moe.experts.2.fc_out.bias": "model-00003-of-00007.safetensors",
621
+ "transformer.h.8.block_sparse_moe.experts.2.fc_out.weight": "model-00003-of-00007.safetensors",
622
+ "transformer.h.8.block_sparse_moe.experts.3.fc_in.bias": "model-00003-of-00007.safetensors",
623
+ "transformer.h.8.block_sparse_moe.experts.3.fc_in.weight": "model-00003-of-00007.safetensors",
624
+ "transformer.h.8.block_sparse_moe.experts.3.fc_out.bias": "model-00003-of-00007.safetensors",
625
+ "transformer.h.8.block_sparse_moe.experts.3.fc_out.weight": "model-00003-of-00007.safetensors",
626
+ "transformer.h.8.block_sparse_moe.gate.weight": "model-00003-of-00007.safetensors",
627
+ "transformer.h.8.ln_1.bias": "model-00003-of-00007.safetensors",
628
+ "transformer.h.8.ln_1.weight": "model-00003-of-00007.safetensors",
629
+ "transformer.h.9.attn.k_proj.weight": "model-00003-of-00007.safetensors",
630
+ "transformer.h.9.attn.out_proj.weight": "model-00003-of-00007.safetensors",
631
+ "transformer.h.9.attn.q_proj.weight": "model-00003-of-00007.safetensors",
632
+ "transformer.h.9.attn.v_proj.weight": "model-00003-of-00007.safetensors",
633
+ "transformer.h.9.block_sparse_moe.experts.0.fc_in.bias": "model-00003-of-00007.safetensors",
634
+ "transformer.h.9.block_sparse_moe.experts.0.fc_in.weight": "model-00003-of-00007.safetensors",
635
+ "transformer.h.9.block_sparse_moe.experts.0.fc_out.bias": "model-00003-of-00007.safetensors",
636
+ "transformer.h.9.block_sparse_moe.experts.0.fc_out.weight": "model-00003-of-00007.safetensors",
637
+ "transformer.h.9.block_sparse_moe.experts.1.fc_in.bias": "model-00003-of-00007.safetensors",
638
+ "transformer.h.9.block_sparse_moe.experts.1.fc_in.weight": "model-00003-of-00007.safetensors",
639
+ "transformer.h.9.block_sparse_moe.experts.1.fc_out.bias": "model-00003-of-00007.safetensors",
640
+ "transformer.h.9.block_sparse_moe.experts.1.fc_out.weight": "model-00003-of-00007.safetensors",
641
+ "transformer.h.9.block_sparse_moe.experts.2.fc_in.bias": "model-00003-of-00007.safetensors",
642
+ "transformer.h.9.block_sparse_moe.experts.2.fc_in.weight": "model-00003-of-00007.safetensors",
643
+ "transformer.h.9.block_sparse_moe.experts.2.fc_out.bias": "model-00003-of-00007.safetensors",
644
+ "transformer.h.9.block_sparse_moe.experts.2.fc_out.weight": "model-00003-of-00007.safetensors",
645
+ "transformer.h.9.block_sparse_moe.experts.3.fc_in.bias": "model-00003-of-00007.safetensors",
646
+ "transformer.h.9.block_sparse_moe.experts.3.fc_in.weight": "model-00003-of-00007.safetensors",
647
+ "transformer.h.9.block_sparse_moe.experts.3.fc_out.bias": "model-00003-of-00007.safetensors",
648
+ "transformer.h.9.block_sparse_moe.experts.3.fc_out.weight": "model-00003-of-00007.safetensors",
649
+ "transformer.h.9.block_sparse_moe.gate.weight": "model-00003-of-00007.safetensors",
650
+ "transformer.h.9.ln_1.bias": "model-00003-of-00007.safetensors",
651
+ "transformer.h.9.ln_1.weight": "model-00003-of-00007.safetensors",
652
+ "transformer.ln_f.bias": "model-00007-of-00007.safetensors",
653
+ "transformer.ln_f.weight": "model-00007-of-00007.safetensors",
654
+ "transformer.wte.weight": "model-00001-of-00007.safetensors"
655
+ }
656
+ }
modeling_gptj_moe.py ADDED
@@ -0,0 +1,671 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ GPT-J model with MoE. """
2
+
3
+ import warnings
4
+ from typing import Optional, Tuple, Union
5
+
6
+ import torch
7
+ import torch.nn.functional as F
8
+
9
+ from torch import nn
10
+
11
+ from transformers.modeling_outputs import (
12
+ MoeCausalLMOutputWithPast,
13
+ MoeModelOutputWithPast
14
+ )
15
+ from transformers.models.gptj.modeling_gptj import (
16
+ GPTJ_ATTENTION_CLASSES,
17
+ GPTJMLP,
18
+ GPTJPreTrainedModel
19
+ )
20
+ from transformers.utils import logging
21
+ from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
22
+
23
+ from .configuration_gptj_moe import GPTJMoEConfig
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ # Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func
28
+ def load_balancing_loss_func(
29
+ gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
30
+ ) -> float:
31
+ r"""
32
+ Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
33
+
34
+ See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
35
+ function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
36
+ experts is too unbalanced.
37
+
38
+ Args:
39
+ gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
40
+ Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
41
+ shape [batch_size X sequence_length, num_experts].
42
+ attention_mask (`torch.Tensor`, None):
43
+ The attention_mask used in forward function
44
+ shape [batch_size X sequence_length] if not None.
45
+ num_experts (`int`, *optional*):
46
+ Number of experts
47
+
48
+ Returns:
49
+ The auxiliary loss.
50
+ """
51
+ if gate_logits is None or not isinstance(gate_logits, tuple):
52
+ return 0
53
+
54
+ if isinstance(gate_logits, tuple):
55
+ compute_device = gate_logits[0].device
56
+ concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
57
+
58
+ routing_weights = F.softmax(concatenated_gate_logits, dim=-1)
59
+
60
+ _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
61
+
62
+ expert_mask = F.one_hot(selected_experts, num_experts)
63
+
64
+ if attention_mask is None:
65
+ # Compute the percentage of tokens routed to each experts
66
+ tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
67
+
68
+ # Compute the average probability of routing to these experts
69
+ router_prob_per_expert = torch.mean(routing_weights, dim=0)
70
+ else:
71
+ batch_size, sequence_length = attention_mask.shape
72
+ num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
73
+
74
+ # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
75
+ expert_attention_mask = (
76
+ attention_mask[None, :, :, None, None]
77
+ .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
78
+ .reshape(-1, top_k, num_experts)
79
+ .to(compute_device)
80
+ )
81
+
82
+ # Compute the percentage of tokens routed to each experts
83
+ tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
84
+ expert_attention_mask, dim=0
85
+ )
86
+
87
+ # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
88
+ router_per_expert_attention_mask = (
89
+ attention_mask[None, :, :, None]
90
+ .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
91
+ .reshape(-1, num_experts)
92
+ .to(compute_device)
93
+ )
94
+
95
+ # Compute the average probability of routing to these experts
96
+ router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
97
+ router_per_expert_attention_mask, dim=0
98
+ )
99
+
100
+ overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
101
+ return overall_loss * num_experts
102
+
103
+ # Copied from transformers.models.mixtral.modeling_mixtral.MixtralSparseMoeBlock
104
+ class GPTJSparseMoE(nn.Module):
105
+ """
106
+ This implementation is
107
+ strictly equivalent to standard MoE with full capacity (no
108
+ dropped tokens). It's faster since it formulates MoE operations
109
+ in terms of block-sparse operations to accomodate imbalanced
110
+ assignments of tokens to experts, whereas standard MoE either
111
+ (1) drop tokens at the cost of reduced performance or (2) set
112
+ capacity factor to number of experts and thus waste computation
113
+ and memory on padding.
114
+ """
115
+
116
+ def __init__(self, config):
117
+ super().__init__()
118
+ self.hidden_dim = config.n_embd
119
+ self.ffn_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
120
+ self.num_experts = config.num_local_experts
121
+ self.top_k = config.num_experts_per_tok
122
+
123
+ # gating
124
+ self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
125
+
126
+ self.experts = nn.ModuleList([GPTJMLP(self.ffn_dim, config) for _ in range(self.num_experts)])
127
+
128
+ # Jitter parameters
129
+ self.jitter_noise = config.router_jitter_noise
130
+
131
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
132
+ """ """
133
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
134
+ if self.training and self.jitter_noise > 0:
135
+ hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
136
+ hidden_states = hidden_states.view(-1, hidden_dim)
137
+ # router_logits: (batch * sequence_length, n_experts)
138
+ router_logits = self.gate(hidden_states)
139
+
140
+ routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
141
+ routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
142
+ routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
143
+ # we cast back to the input dtype
144
+ routing_weights = routing_weights.to(hidden_states.dtype)
145
+
146
+ final_hidden_states = torch.zeros(
147
+ (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
148
+ )
149
+
150
+ # One hot encode the selected experts to create an expert mask
151
+ # this will be used to easily index which expert is going to be sollicitated
152
+ expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
153
+
154
+ # Loop over all available experts in the model and perform the computation on each expert
155
+ for expert_idx in range(self.num_experts):
156
+ expert_layer = self.experts[expert_idx]
157
+ idx, top_x = torch.where(expert_mask[expert_idx])
158
+
159
+ if top_x.shape[0] == 0:
160
+ continue
161
+
162
+ # Index the correct hidden states and compute the expert hidden state for
163
+ # the current expert. We need to make sure to multiply the output hidden
164
+ # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
165
+ current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
166
+ current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
167
+
168
+ # However `index_add_` only support torch tensors for indexing so we'll use
169
+ # the `top_x` tensor here.
170
+ final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
171
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
172
+ return final_hidden_states, router_logits
173
+
174
+ class GPTJMoEBlock(nn.Module):
175
+ def __init__(self, config):
176
+ super().__init__()
177
+ self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
178
+ self.attn = GPTJ_ATTENTION_CLASSES[config._attn_implementation](config)
179
+ self.block_sparse_moe = GPTJSparseMoE(config)
180
+
181
+ def forward(
182
+ self,
183
+ hidden_states: Optional[torch.FloatTensor],
184
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
185
+ attention_mask: Optional[torch.FloatTensor] = None,
186
+ position_ids: Optional[torch.LongTensor] = None,
187
+ head_mask: Optional[torch.FloatTensor] = None,
188
+ use_cache: Optional[bool] = False,
189
+ output_attentions: Optional[bool] = False,
190
+ output_router_logits: Optional[bool] = False,
191
+ ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
192
+ residual = hidden_states
193
+ hidden_states = self.ln_1(hidden_states)
194
+ attn_outputs = self.attn(
195
+ hidden_states=hidden_states,
196
+ layer_past=layer_past,
197
+ attention_mask=attention_mask,
198
+ position_ids=position_ids,
199
+ head_mask=head_mask,
200
+ use_cache=use_cache,
201
+ output_attentions=output_attentions,
202
+ )
203
+ attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
204
+ outputs = attn_outputs[1:]
205
+
206
+ feed_forward_hidden_states, router_logits = self.block_sparse_moe(hidden_states)
207
+ hidden_states = attn_output + feed_forward_hidden_states + residual
208
+
209
+ if use_cache:
210
+ outputs = (hidden_states,) + outputs
211
+ else:
212
+ outputs = (hidden_states,) + outputs[1:]
213
+
214
+ if output_router_logits:
215
+ outputs = outputs + (router_logits,)
216
+
217
+ return outputs # hidden_states, present, (attentions), (router_logits)
218
+
219
+ class GPTJMoEModel(GPTJPreTrainedModel):
220
+ def __init__(self, config):
221
+ super().__init__(config)
222
+
223
+ self.embed_dim = config.n_embd
224
+ self.vocab_size = config.vocab_size
225
+ self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
226
+ self.drop = nn.Dropout(config.embd_pdrop)
227
+ self.h = nn.ModuleList([GPTJMoEBlock(config) for _ in range(config.n_layer)])
228
+ self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
229
+
230
+ # Model parallel
231
+ self.model_parallel = False
232
+ self.device_map = None
233
+ self.gradient_checkpointing = False
234
+
235
+ # Initialize weights and apply final processing
236
+ self.post_init()
237
+
238
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
239
+
240
+ def parallelize(self, device_map=None):
241
+ warnings.warn(
242
+ "`GPTJModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
243
+ " model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
244
+ " `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
245
+ " ...}",
246
+ FutureWarning,
247
+ )
248
+ # Check validity of device_map
249
+ self.device_map = (
250
+ get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
251
+ )
252
+ assert_device_map(self.device_map, len(self.h))
253
+ self.model_parallel = True
254
+ self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
255
+ self.last_device = "cuda:" + str(max(self.device_map.keys()))
256
+ self.wte = self.wte.to(self.first_device)
257
+ # Load onto devices
258
+ for k, v in self.device_map.items():
259
+ for block in v:
260
+ cuda_device = "cuda:" + str(k)
261
+ self.h[block] = self.h[block].to(cuda_device)
262
+ # ln_f to last
263
+ self.ln_f = self.ln_f.to(self.last_device)
264
+
265
+ def deparallelize(self):
266
+ warnings.warn(
267
+ "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
268
+ FutureWarning,
269
+ )
270
+ self.model_parallel = False
271
+ self.device_map = None
272
+ self.first_device = "cpu"
273
+ self.last_device = "cpu"
274
+ self.wte = self.wte.to("cpu")
275
+ for index in range(len(self.h)):
276
+ self.h[index] = self.h[index].to("cpu")
277
+ self.ln_f = self.ln_f.to("cpu")
278
+ torch.cuda.empty_cache()
279
+
280
+ def get_input_embeddings(self):
281
+ return self.wte
282
+
283
+ def set_input_embeddings(self, new_embeddings):
284
+ self.wte = new_embeddings
285
+
286
+ def forward(
287
+ self,
288
+ input_ids: Optional[torch.LongTensor] = None,
289
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
290
+ attention_mask: Optional[torch.FloatTensor] = None,
291
+ token_type_ids: Optional[torch.LongTensor] = None,
292
+ position_ids: Optional[torch.LongTensor] = None,
293
+ head_mask: Optional[torch.FloatTensor] = None,
294
+ inputs_embeds: Optional[torch.FloatTensor] = None,
295
+ use_cache: Optional[bool] = None,
296
+ output_attentions: Optional[bool] = None,
297
+ output_hidden_states: Optional[bool] = None,
298
+ output_router_logits: Optional[bool] = None,
299
+ return_dict: Optional[bool] = None,
300
+ ) -> Union[Tuple, MoeModelOutputWithPast]:
301
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
302
+ output_router_logits = (
303
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
304
+ )
305
+ output_hidden_states = (
306
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
307
+ )
308
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
309
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
310
+
311
+ if input_ids is not None and inputs_embeds is not None:
312
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
313
+ elif input_ids is not None:
314
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
315
+ input_shape = input_ids.size()
316
+ input_ids = input_ids.view(-1, input_shape[-1])
317
+ batch_size = input_ids.shape[0]
318
+ elif inputs_embeds is not None:
319
+ input_shape = inputs_embeds.size()[:-1]
320
+ batch_size = inputs_embeds.shape[0]
321
+ else:
322
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
323
+
324
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
325
+
326
+ if token_type_ids is not None:
327
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
328
+
329
+ if past_key_values is None:
330
+ past_length = 0
331
+ past_key_values = tuple([None] * len(self.h))
332
+ else:
333
+ past_length = past_key_values[0][0].size(-2)
334
+
335
+ if position_ids is None:
336
+ position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
337
+ position_ids = position_ids.unsqueeze(0)
338
+
339
+ if not self._use_flash_attention_2:
340
+ # Attention mask.
341
+ if attention_mask is not None:
342
+ if batch_size <= 0:
343
+ raise ValueError("batch_size has to be defined and > 0")
344
+ attention_mask = attention_mask.view(batch_size, -1)
345
+ # We create a 3D attention mask from a 2D tensor mask.
346
+ # Sizes are [batch_size, 1, 1, to_seq_length]
347
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
348
+ # this attention mask is more simple than the triangular masking of causal attention
349
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
350
+ attention_mask = attention_mask[:, None, None, :]
351
+
352
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
353
+ # masked positions, this operation will create a tensor which is 0.0 for
354
+ # positions we want to attend and the dtype's smallest value for masked positions.
355
+ # Since we are adding it to the raw scores before the softmax, this is
356
+ # effectively the same as removing these entirely.
357
+ attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
358
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
359
+
360
+ # Prepare head mask if needed
361
+ # 1.0 in head_mask indicate we keep the head
362
+ # attention_probs has shape bsz x num_attention_heads x N x N
363
+ # head_mask has shape n_layer x batch x num_attention_heads x N x N
364
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
365
+
366
+ if inputs_embeds is None:
367
+ inputs_embeds = self.wte(input_ids)
368
+
369
+ hidden_states = inputs_embeds
370
+
371
+ if token_type_ids is not None:
372
+ token_type_embeds = self.wte(token_type_ids)
373
+ hidden_states = hidden_states + token_type_embeds
374
+
375
+ hidden_states = self.drop(hidden_states)
376
+
377
+ output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
378
+
379
+ if self.gradient_checkpointing and self.training:
380
+ if use_cache:
381
+ logger.warning_once(
382
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
383
+ )
384
+ use_cache = False
385
+
386
+ presents = () if use_cache else None
387
+ all_self_attentions = () if output_attentions else None
388
+ all_hidden_states = () if output_hidden_states else None
389
+ all_router_logits = () if output_router_logits else None
390
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
391
+ # Model parallel
392
+ if self.model_parallel:
393
+ torch.cuda.set_device(hidden_states.device)
394
+ # Ensure layer_past is on same device as hidden_states (might not be correct)
395
+ if layer_past is not None:
396
+ layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
397
+ # Ensure that attention_mask is always on the same device as hidden_states
398
+ if attention_mask is not None:
399
+ attention_mask = attention_mask.to(hidden_states.device)
400
+ if isinstance(head_mask, torch.Tensor):
401
+ head_mask = head_mask.to(hidden_states.device)
402
+ if output_hidden_states:
403
+ all_hidden_states = all_hidden_states + (hidden_states,)
404
+
405
+ if self.gradient_checkpointing and self.training:
406
+ outputs = self._gradient_checkpointing_func(
407
+ block.__call__,
408
+ hidden_states,
409
+ None,
410
+ attention_mask,
411
+ position_ids,
412
+ head_mask[i],
413
+ use_cache,
414
+ output_attentions,
415
+ output_router_logits,
416
+ )
417
+ else:
418
+ outputs = block(
419
+ hidden_states=hidden_states,
420
+ layer_past=layer_past,
421
+ attention_mask=attention_mask,
422
+ position_ids=position_ids,
423
+ head_mask=head_mask[i],
424
+ use_cache=use_cache,
425
+ output_attentions=output_attentions,
426
+ output_router_logits=output_router_logits,
427
+ )
428
+
429
+ hidden_states = outputs[0]
430
+ if use_cache is True:
431
+ presents = presents + (outputs[1],)
432
+
433
+ if output_attentions:
434
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
435
+
436
+ if output_router_logits:
437
+ all_router_logits = all_router_logits + (outputs[-1],)
438
+
439
+ # Model Parallel: If it's the last layer for that device, put things on the next device
440
+ if self.model_parallel:
441
+ for k, v in self.device_map.items():
442
+ if i == v[-1] and "cuda:" + str(k) != self.last_device:
443
+ hidden_states = hidden_states.to("cuda:" + str(k + 1))
444
+
445
+ hidden_states = self.ln_f(hidden_states)
446
+
447
+ hidden_states = hidden_states.view(output_shape)
448
+ # Add last hidden state
449
+ if output_hidden_states:
450
+ all_hidden_states = all_hidden_states + (hidden_states,)
451
+
452
+ # Add router logits
453
+ if output_router_logits:
454
+ all_router_logits += (outputs[-1],)
455
+
456
+ if not return_dict:
457
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
458
+
459
+ return MoeModelOutputWithPast(
460
+ last_hidden_state=hidden_states,
461
+ past_key_values=presents,
462
+ hidden_states=all_hidden_states,
463
+ attentions=all_self_attentions,
464
+ router_logits=all_router_logits,
465
+ )
466
+
467
+ class GPTJMoEForCausalLM(GPTJPreTrainedModel):
468
+ _tied_weights_keys = ["lm_head.weight"]
469
+
470
+ def __init__(self, config):
471
+ super().__init__(config)
472
+ self.transformer = GPTJMoEModel(config)
473
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
474
+
475
+ # Model parallel
476
+ self.model_parallel = False
477
+ self.device_map = None
478
+
479
+ # MoE
480
+ self.router_aux_loss_coef = config.router_aux_loss_coef
481
+ self.num_experts = config.num_local_experts
482
+ self.num_experts_per_tok = config.num_experts_per_tok
483
+
484
+ # Initialize weights and apply final processing
485
+ self.post_init()
486
+
487
+ def parallelize(self, device_map=None):
488
+ warnings.warn(
489
+ "`GPTJForCausalLM.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
490
+ " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
491
+ " `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
492
+ " 0, 'transformer.h.1': 1, ...}",
493
+ FutureWarning,
494
+ )
495
+ self.device_map = (
496
+ get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
497
+ if device_map is None
498
+ else device_map
499
+ )
500
+ assert_device_map(self.device_map, len(self.transformer.h))
501
+ self.transformer.parallelize(self.device_map)
502
+ self.lm_head = self.lm_head.to(self.transformer.first_device)
503
+ self.model_parallel = True
504
+
505
+ def deparallelize(self):
506
+ warnings.warn(
507
+ "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
508
+ FutureWarning,
509
+ )
510
+ self.transformer.deparallelize()
511
+ self.transformer = self.transformer.to("cpu")
512
+ self.lm_head = self.lm_head.to("cpu")
513
+ self.model_parallel = False
514
+ torch.cuda.empty_cache()
515
+
516
+ def get_output_embeddings(self):
517
+ return self.lm_head
518
+
519
+ def set_output_embeddings(self, new_embeddings):
520
+ self.lm_head = new_embeddings
521
+
522
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, output_router_logits=False, **kwargs):
523
+ token_type_ids = kwargs.get("token_type_ids", None)
524
+ # Omit tokens covered by past_key_values
525
+ if past_key_values:
526
+ past_length = past_key_values[0][0].shape[2]
527
+
528
+ # Some generation methods already pass only the last input ID
529
+ if input_ids.shape[1] > past_length:
530
+ remove_prefix_length = past_length
531
+ else:
532
+ # Default to old behavior: keep only final ID
533
+ remove_prefix_length = input_ids.shape[1] - 1
534
+
535
+ input_ids = input_ids[:, remove_prefix_length:]
536
+ if token_type_ids is not None:
537
+ token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
538
+
539
+ attention_mask = kwargs.get("attention_mask", None)
540
+ position_ids = kwargs.get("position_ids", None)
541
+
542
+ if attention_mask is not None and position_ids is None:
543
+ # create position_ids on the fly for batch generation
544
+ position_ids = attention_mask.long().cumsum(-1) - 1
545
+ position_ids.masked_fill_(attention_mask == 0, 1)
546
+ if past_key_values:
547
+ position_ids = position_ids[:, -input_ids.shape[1] :]
548
+
549
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
550
+ if inputs_embeds is not None and past_key_values is None:
551
+ model_inputs = {"inputs_embeds": inputs_embeds}
552
+ else:
553
+ model_inputs = {"input_ids": input_ids}
554
+
555
+ model_inputs.update(
556
+ {
557
+ "past_key_values": past_key_values,
558
+ "use_cache": kwargs.get("use_cache"),
559
+ "position_ids": position_ids,
560
+ "attention_mask": attention_mask,
561
+ "token_type_ids": token_type_ids,
562
+ "output_router_logits": output_router_logits,
563
+ }
564
+ )
565
+
566
+ return model_inputs
567
+
568
+ def forward(
569
+ self,
570
+ input_ids: Optional[torch.LongTensor] = None,
571
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
572
+ attention_mask: Optional[torch.FloatTensor] = None,
573
+ token_type_ids: Optional[torch.LongTensor] = None,
574
+ position_ids: Optional[torch.LongTensor] = None,
575
+ head_mask: Optional[torch.FloatTensor] = None,
576
+ inputs_embeds: Optional[torch.FloatTensor] = None,
577
+ labels: Optional[torch.LongTensor] = None,
578
+ use_cache: Optional[bool] = None,
579
+ output_attentions: Optional[bool] = None,
580
+ output_hidden_states: Optional[bool] = None,
581
+ output_router_logits: Optional[bool] = None,
582
+ return_dict: Optional[bool] = None,
583
+ ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
584
+ r"""
585
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
586
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
587
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
588
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
589
+ """
590
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
591
+
592
+ transformer_outputs = self.transformer(
593
+ input_ids,
594
+ past_key_values=past_key_values,
595
+ attention_mask=attention_mask,
596
+ token_type_ids=token_type_ids,
597
+ position_ids=position_ids,
598
+ head_mask=head_mask,
599
+ inputs_embeds=inputs_embeds,
600
+ use_cache=use_cache,
601
+ output_attentions=output_attentions,
602
+ output_hidden_states=output_hidden_states,
603
+ output_router_logits=output_router_logits,
604
+ return_dict=return_dict,
605
+ )
606
+ hidden_states = transformer_outputs[0]
607
+
608
+ # Set device for model parallelism
609
+ if self.model_parallel:
610
+ torch.cuda.set_device(self.transformer.first_device)
611
+ hidden_states = hidden_states.to(self.lm_head.weight.device)
612
+
613
+ # make sure sampling in fp16 works correctly and
614
+ # compute loss in fp32 to match with mesh-tf version
615
+ # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
616
+ lm_logits = self.lm_head(hidden_states).to(torch.float32)
617
+
618
+ loss = None
619
+ if labels is not None:
620
+ # move labels to correct device to enable model parallelism
621
+ labels = labels.to(lm_logits.device)
622
+ # Shift so that tokens < n predict n
623
+ shift_logits = lm_logits[..., :-1, :].contiguous()
624
+ shift_labels = labels[..., 1:].contiguous()
625
+ # Flatten the tokens
626
+ loss_fct = nn.CrossEntropyLoss()
627
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
628
+
629
+ loss = loss.to(hidden_states.dtype)
630
+
631
+ # MoE loss
632
+ aux_loss = None
633
+ if output_router_logits:
634
+ aux_loss = load_balancing_loss_func(
635
+ transformer_outputs.router_logits if return_dict else transformer_outputs[-1],
636
+ self.num_experts,
637
+ self.num_experts_per_tok,
638
+ attention_mask,
639
+ )
640
+ if labels is not None:
641
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
642
+
643
+ if not return_dict:
644
+ output = (lm_logits,) + transformer_outputs[1:]
645
+ if output_router_logits:
646
+ output = (aux_loss,) + output
647
+ return ((loss,) + output) if loss is not None else output
648
+
649
+ return MoeCausalLMOutputWithPast(
650
+ loss=loss,
651
+ aux_loss=aux_loss,
652
+ logits=lm_logits,
653
+ past_key_values=transformer_outputs.past_key_values,
654
+ hidden_states=transformer_outputs.hidden_states,
655
+ attentions=transformer_outputs.attentions,
656
+ router_logits=transformer_outputs.router_logits
657
+ )
658
+
659
+ @staticmethod
660
+ def _reorder_cache(
661
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
662
+ ) -> Tuple[Tuple[torch.Tensor]]:
663
+ """
664
+ This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
665
+ [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
666
+ beam_idx at every generation step.
667
+ """
668
+ return tuple(
669
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
670
+ for layer_past in past_key_values
671
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,1166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "50256": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "50257": {
14
+ "content": "<|extratoken_1|>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": false
20
+ },
21
+ "50258": {
22
+ "content": "<|extratoken_2|>",
23
+ "lstrip": false,
24
+ "normalized": true,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": false
28
+ },
29
+ "50259": {
30
+ "content": "<|extratoken_3|>",
31
+ "lstrip": false,
32
+ "normalized": true,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": false
36
+ },
37
+ "50260": {
38
+ "content": "<|extratoken_4|>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ },
45
+ "50261": {
46
+ "content": "<|extratoken_5|>",
47
+ "lstrip": false,
48
+ "normalized": true,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": false
52
+ },
53
+ "50262": {
54
+ "content": "<|extratoken_6|>",
55
+ "lstrip": false,
56
+ "normalized": true,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": false
60
+ },
61
+ "50263": {
62
+ "content": "<|extratoken_7|>",
63
+ "lstrip": false,
64
+ "normalized": true,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": false
68
+ },
69
+ "50264": {
70
+ "content": "<|extratoken_8|>",
71
+ "lstrip": false,
72
+ "normalized": true,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": false
76
+ },
77
+ "50265": {
78
+ "content": "<|extratoken_9|>",
79
+ "lstrip": false,
80
+ "normalized": true,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": false
84
+ },
85
+ "50266": {
86
+ "content": "<|extratoken_10|>",
87
+ "lstrip": false,
88
+ "normalized": true,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": false
92
+ },
93
+ "50267": {
94
+ "content": "<|extratoken_11|>",
95
+ "lstrip": false,
96
+ "normalized": true,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": false
100
+ },
101
+ "50268": {
102
+ "content": "<|extratoken_12|>",
103
+ "lstrip": false,
104
+ "normalized": true,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": false
108
+ },
109
+ "50269": {
110
+ "content": "<|extratoken_13|>",
111
+ "lstrip": false,
112
+ "normalized": true,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": false
116
+ },
117
+ "50270": {
118
+ "content": "<|extratoken_14|>",
119
+ "lstrip": false,
120
+ "normalized": true,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "50271": {
126
+ "content": "<|extratoken_15|>",
127
+ "lstrip": false,
128
+ "normalized": true,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "50272": {
134
+ "content": "<|extratoken_16|>",
135
+ "lstrip": false,
136
+ "normalized": true,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "50273": {
142
+ "content": "<|extratoken_17|>",
143
+ "lstrip": false,
144
+ "normalized": true,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "50274": {
150
+ "content": "<|extratoken_18|>",
151
+ "lstrip": false,
152
+ "normalized": true,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "50275": {
158
+ "content": "<|extratoken_19|>",
159
+ "lstrip": false,
160
+ "normalized": true,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "50276": {
166
+ "content": "<|extratoken_20|>",
167
+ "lstrip": false,
168
+ "normalized": true,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "50277": {
174
+ "content": "<|extratoken_21|>",
175
+ "lstrip": false,
176
+ "normalized": true,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "50278": {
182
+ "content": "<|extratoken_22|>",
183
+ "lstrip": false,
184
+ "normalized": true,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "50279": {
190
+ "content": "<|extratoken_23|>",
191
+ "lstrip": false,
192
+ "normalized": true,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "50280": {
198
+ "content": "<|extratoken_24|>",
199
+ "lstrip": false,
200
+ "normalized": true,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "50281": {
206
+ "content": "<|extratoken_25|>",
207
+ "lstrip": false,
208
+ "normalized": true,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "50282": {
214
+ "content": "<|extratoken_26|>",
215
+ "lstrip": false,
216
+ "normalized": true,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": false
220
+ },
221
+ "50283": {
222
+ "content": "<|extratoken_27|>",
223
+ "lstrip": false,
224
+ "normalized": true,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": false
228
+ },
229
+ "50284": {
230
+ "content": "<|extratoken_28|>",
231
+ "lstrip": false,
232
+ "normalized": true,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": false
236
+ },
237
+ "50285": {
238
+ "content": "<|extratoken_29|>",
239
+ "lstrip": false,
240
+ "normalized": true,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": false
244
+ },
245
+ "50286": {
246
+ "content": "<|extratoken_30|>",
247
+ "lstrip": false,
248
+ "normalized": true,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": false
252
+ },
253
+ "50287": {
254
+ "content": "<|extratoken_31|>",
255
+ "lstrip": false,
256
+ "normalized": true,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": false
260
+ },
261
+ "50288": {
262
+ "content": "<|extratoken_32|>",
263
+ "lstrip": false,
264
+ "normalized": true,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": false
268
+ },
269
+ "50289": {
270
+ "content": "<|extratoken_33|>",
271
+ "lstrip": false,
272
+ "normalized": true,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": false
276
+ },
277
+ "50290": {
278
+ "content": "<|extratoken_34|>",
279
+ "lstrip": false,
280
+ "normalized": true,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": false
284
+ },
285
+ "50291": {
286
+ "content": "<|extratoken_35|>",
287
+ "lstrip": false,
288
+ "normalized": true,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": false
292
+ },
293
+ "50292": {
294
+ "content": "<|extratoken_36|>",
295
+ "lstrip": false,
296
+ "normalized": true,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": false
300
+ },
301
+ "50293": {
302
+ "content": "<|extratoken_37|>",
303
+ "lstrip": false,
304
+ "normalized": true,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": false
308
+ },
309
+ "50294": {
310
+ "content": "<|extratoken_38|>",
311
+ "lstrip": false,
312
+ "normalized": true,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": false
316
+ },
317
+ "50295": {
318
+ "content": "<|extratoken_39|>",
319
+ "lstrip": false,
320
+ "normalized": true,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": false
324
+ },
325
+ "50296": {
326
+ "content": "<|extratoken_40|>",
327
+ "lstrip": false,
328
+ "normalized": true,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": false
332
+ },
333
+ "50297": {
334
+ "content": "<|extratoken_41|>",
335
+ "lstrip": false,
336
+ "normalized": true,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": false
340
+ },
341
+ "50298": {
342
+ "content": "<|extratoken_42|>",
343
+ "lstrip": false,
344
+ "normalized": true,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": false
348
+ },
349
+ "50299": {
350
+ "content": "<|extratoken_43|>",
351
+ "lstrip": false,
352
+ "normalized": true,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": false
356
+ },
357
+ "50300": {
358
+ "content": "<|extratoken_44|>",
359
+ "lstrip": false,
360
+ "normalized": true,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": false
364
+ },
365
+ "50301": {
366
+ "content": "<|extratoken_45|>",
367
+ "lstrip": false,
368
+ "normalized": true,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": false
372
+ },
373
+ "50302": {
374
+ "content": "<|extratoken_46|>",
375
+ "lstrip": false,
376
+ "normalized": true,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": false
380
+ },
381
+ "50303": {
382
+ "content": "<|extratoken_47|>",
383
+ "lstrip": false,
384
+ "normalized": true,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": false
388
+ },
389
+ "50304": {
390
+ "content": "<|extratoken_48|>",
391
+ "lstrip": false,
392
+ "normalized": true,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": false
396
+ },
397
+ "50305": {
398
+ "content": "<|extratoken_49|>",
399
+ "lstrip": false,
400
+ "normalized": true,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": false
404
+ },
405
+ "50306": {
406
+ "content": "<|extratoken_50|>",
407
+ "lstrip": false,
408
+ "normalized": true,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": false
412
+ },
413
+ "50307": {
414
+ "content": "<|extratoken_51|>",
415
+ "lstrip": false,
416
+ "normalized": true,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": false
420
+ },
421
+ "50308": {
422
+ "content": "<|extratoken_52|>",
423
+ "lstrip": false,
424
+ "normalized": true,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": false
428
+ },
429
+ "50309": {
430
+ "content": "<|extratoken_53|>",
431
+ "lstrip": false,
432
+ "normalized": true,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": false
436
+ },
437
+ "50310": {
438
+ "content": "<|extratoken_54|>",
439
+ "lstrip": false,
440
+ "normalized": true,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": false
444
+ },
445
+ "50311": {
446
+ "content": "<|extratoken_55|>",
447
+ "lstrip": false,
448
+ "normalized": true,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": false
452
+ },
453
+ "50312": {
454
+ "content": "<|extratoken_56|>",
455
+ "lstrip": false,
456
+ "normalized": true,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": false
460
+ },
461
+ "50313": {
462
+ "content": "<|extratoken_57|>",
463
+ "lstrip": false,
464
+ "normalized": true,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": false
468
+ },
469
+ "50314": {
470
+ "content": "<|extratoken_58|>",
471
+ "lstrip": false,
472
+ "normalized": true,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": false
476
+ },
477
+ "50315": {
478
+ "content": "<|extratoken_59|>",
479
+ "lstrip": false,
480
+ "normalized": true,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": false
484
+ },
485
+ "50316": {
486
+ "content": "<|extratoken_60|>",
487
+ "lstrip": false,
488
+ "normalized": true,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": false
492
+ },
493
+ "50317": {
494
+ "content": "<|extratoken_61|>",
495
+ "lstrip": false,
496
+ "normalized": true,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": false
500
+ },
501
+ "50318": {
502
+ "content": "<|extratoken_62|>",
503
+ "lstrip": false,
504
+ "normalized": true,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": false
508
+ },
509
+ "50319": {
510
+ "content": "<|extratoken_63|>",
511
+ "lstrip": false,
512
+ "normalized": true,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": false
516
+ },
517
+ "50320": {
518
+ "content": "<|extratoken_64|>",
519
+ "lstrip": false,
520
+ "normalized": true,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": false
524
+ },
525
+ "50321": {
526
+ "content": "<|extratoken_65|>",
527
+ "lstrip": false,
528
+ "normalized": true,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": false
532
+ },
533
+ "50322": {
534
+ "content": "<|extratoken_66|>",
535
+ "lstrip": false,
536
+ "normalized": true,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": false
540
+ },
541
+ "50323": {
542
+ "content": "<|extratoken_67|>",
543
+ "lstrip": false,
544
+ "normalized": true,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": false
548
+ },
549
+ "50324": {
550
+ "content": "<|extratoken_68|>",
551
+ "lstrip": false,
552
+ "normalized": true,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": false
556
+ },
557
+ "50325": {
558
+ "content": "<|extratoken_69|>",
559
+ "lstrip": false,
560
+ "normalized": true,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": false
564
+ },
565
+ "50326": {
566
+ "content": "<|extratoken_70|>",
567
+ "lstrip": false,
568
+ "normalized": true,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": false
572
+ },
573
+ "50327": {
574
+ "content": "<|extratoken_71|>",
575
+ "lstrip": false,
576
+ "normalized": true,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": false
580
+ },
581
+ "50328": {
582
+ "content": "<|extratoken_72|>",
583
+ "lstrip": false,
584
+ "normalized": true,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": false
588
+ },
589
+ "50329": {
590
+ "content": "<|extratoken_73|>",
591
+ "lstrip": false,
592
+ "normalized": true,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": false
596
+ },
597
+ "50330": {
598
+ "content": "<|extratoken_74|>",
599
+ "lstrip": false,
600
+ "normalized": true,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": false
604
+ },
605
+ "50331": {
606
+ "content": "<|extratoken_75|>",
607
+ "lstrip": false,
608
+ "normalized": true,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": false
612
+ },
613
+ "50332": {
614
+ "content": "<|extratoken_76|>",
615
+ "lstrip": false,
616
+ "normalized": true,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": false
620
+ },
621
+ "50333": {
622
+ "content": "<|extratoken_77|>",
623
+ "lstrip": false,
624
+ "normalized": true,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": false
628
+ },
629
+ "50334": {
630
+ "content": "<|extratoken_78|>",
631
+ "lstrip": false,
632
+ "normalized": true,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": false
636
+ },
637
+ "50335": {
638
+ "content": "<|extratoken_79|>",
639
+ "lstrip": false,
640
+ "normalized": true,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": false
644
+ },
645
+ "50336": {
646
+ "content": "<|extratoken_80|>",
647
+ "lstrip": false,
648
+ "normalized": true,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": false
652
+ },
653
+ "50337": {
654
+ "content": "<|extratoken_81|>",
655
+ "lstrip": false,
656
+ "normalized": true,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": false
660
+ },
661
+ "50338": {
662
+ "content": "<|extratoken_82|>",
663
+ "lstrip": false,
664
+ "normalized": true,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": false
668
+ },
669
+ "50339": {
670
+ "content": "<|extratoken_83|>",
671
+ "lstrip": false,
672
+ "normalized": true,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": false
676
+ },
677
+ "50340": {
678
+ "content": "<|extratoken_84|>",
679
+ "lstrip": false,
680
+ "normalized": true,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": false
684
+ },
685
+ "50341": {
686
+ "content": "<|extratoken_85|>",
687
+ "lstrip": false,
688
+ "normalized": true,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": false
692
+ },
693
+ "50342": {
694
+ "content": "<|extratoken_86|>",
695
+ "lstrip": false,
696
+ "normalized": true,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": false
700
+ },
701
+ "50343": {
702
+ "content": "<|extratoken_87|>",
703
+ "lstrip": false,
704
+ "normalized": true,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": false
708
+ },
709
+ "50344": {
710
+ "content": "<|extratoken_88|>",
711
+ "lstrip": false,
712
+ "normalized": true,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": false
716
+ },
717
+ "50345": {
718
+ "content": "<|extratoken_89|>",
719
+ "lstrip": false,
720
+ "normalized": true,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": false
724
+ },
725
+ "50346": {
726
+ "content": "<|extratoken_90|>",
727
+ "lstrip": false,
728
+ "normalized": true,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": false
732
+ },
733
+ "50347": {
734
+ "content": "<|extratoken_91|>",
735
+ "lstrip": false,
736
+ "normalized": true,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": false
740
+ },
741
+ "50348": {
742
+ "content": "<|extratoken_92|>",
743
+ "lstrip": false,
744
+ "normalized": true,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": false
748
+ },
749
+ "50349": {
750
+ "content": "<|extratoken_93|>",
751
+ "lstrip": false,
752
+ "normalized": true,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": false
756
+ },
757
+ "50350": {
758
+ "content": "<|extratoken_94|>",
759
+ "lstrip": false,
760
+ "normalized": true,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": false
764
+ },
765
+ "50351": {
766
+ "content": "<|extratoken_95|>",
767
+ "lstrip": false,
768
+ "normalized": true,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": false
772
+ },
773
+ "50352": {
774
+ "content": "<|extratoken_96|>",
775
+ "lstrip": false,
776
+ "normalized": true,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": false
780
+ },
781
+ "50353": {
782
+ "content": "<|extratoken_97|>",
783
+ "lstrip": false,
784
+ "normalized": true,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": false
788
+ },
789
+ "50354": {
790
+ "content": "<|extratoken_98|>",
791
+ "lstrip": false,
792
+ "normalized": true,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": false
796
+ },
797
+ "50355": {
798
+ "content": "<|extratoken_99|>",
799
+ "lstrip": false,
800
+ "normalized": true,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": false
804
+ },
805
+ "50356": {
806
+ "content": "<|extratoken_100|>",
807
+ "lstrip": false,
808
+ "normalized": true,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": false
812
+ },
813
+ "50357": {
814
+ "content": "<|extratoken_101|>",
815
+ "lstrip": false,
816
+ "normalized": true,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": false
820
+ },
821
+ "50358": {
822
+ "content": "<|extratoken_102|>",
823
+ "lstrip": false,
824
+ "normalized": true,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": false
828
+ },
829
+ "50359": {
830
+ "content": "<|extratoken_103|>",
831
+ "lstrip": false,
832
+ "normalized": true,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": false
836
+ },
837
+ "50360": {
838
+ "content": "<|extratoken_104|>",
839
+ "lstrip": false,
840
+ "normalized": true,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": false
844
+ },
845
+ "50361": {
846
+ "content": "<|extratoken_105|>",
847
+ "lstrip": false,
848
+ "normalized": true,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": false
852
+ },
853
+ "50362": {
854
+ "content": "<|extratoken_106|>",
855
+ "lstrip": false,
856
+ "normalized": true,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": false
860
+ },
861
+ "50363": {
862
+ "content": "<|extratoken_107|>",
863
+ "lstrip": false,
864
+ "normalized": true,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": false
868
+ },
869
+ "50364": {
870
+ "content": "<|extratoken_108|>",
871
+ "lstrip": false,
872
+ "normalized": true,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": false
876
+ },
877
+ "50365": {
878
+ "content": "<|extratoken_109|>",
879
+ "lstrip": false,
880
+ "normalized": true,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": false
884
+ },
885
+ "50366": {
886
+ "content": "<|extratoken_110|>",
887
+ "lstrip": false,
888
+ "normalized": true,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": false
892
+ },
893
+ "50367": {
894
+ "content": "<|extratoken_111|>",
895
+ "lstrip": false,
896
+ "normalized": true,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": false
900
+ },
901
+ "50368": {
902
+ "content": "<|extratoken_112|>",
903
+ "lstrip": false,
904
+ "normalized": true,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": false
908
+ },
909
+ "50369": {
910
+ "content": "<|extratoken_113|>",
911
+ "lstrip": false,
912
+ "normalized": true,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": false
916
+ },
917
+ "50370": {
918
+ "content": "<|extratoken_114|>",
919
+ "lstrip": false,
920
+ "normalized": true,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": false
924
+ },
925
+ "50371": {
926
+ "content": "<|extratoken_115|>",
927
+ "lstrip": false,
928
+ "normalized": true,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": false
932
+ },
933
+ "50372": {
934
+ "content": "<|extratoken_116|>",
935
+ "lstrip": false,
936
+ "normalized": true,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": false
940
+ },
941
+ "50373": {
942
+ "content": "<|extratoken_117|>",
943
+ "lstrip": false,
944
+ "normalized": true,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": false
948
+ },
949
+ "50374": {
950
+ "content": "<|extratoken_118|>",
951
+ "lstrip": false,
952
+ "normalized": true,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": false
956
+ },
957
+ "50375": {
958
+ "content": "<|extratoken_119|>",
959
+ "lstrip": false,
960
+ "normalized": true,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": false
964
+ },
965
+ "50376": {
966
+ "content": "<|extratoken_120|>",
967
+ "lstrip": false,
968
+ "normalized": true,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": false
972
+ },
973
+ "50377": {
974
+ "content": "<|extratoken_121|>",
975
+ "lstrip": false,
976
+ "normalized": true,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": false
980
+ },
981
+ "50378": {
982
+ "content": "<|extratoken_122|>",
983
+ "lstrip": false,
984
+ "normalized": true,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": false
988
+ },
989
+ "50379": {
990
+ "content": "<|extratoken_123|>",
991
+ "lstrip": false,
992
+ "normalized": true,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": false
996
+ },
997
+ "50380": {
998
+ "content": "<|extratoken_124|>",
999
+ "lstrip": false,
1000
+ "normalized": true,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": false
1004
+ },
1005
+ "50381": {
1006
+ "content": "<|extratoken_125|>",
1007
+ "lstrip": false,
1008
+ "normalized": true,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": false
1012
+ },
1013
+ "50382": {
1014
+ "content": "<|extratoken_126|>",
1015
+ "lstrip": false,
1016
+ "normalized": true,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": false
1020
+ },
1021
+ "50383": {
1022
+ "content": "<|extratoken_127|>",
1023
+ "lstrip": false,
1024
+ "normalized": true,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": false
1028
+ },
1029
+ "50384": {
1030
+ "content": "<|extratoken_128|>",
1031
+ "lstrip": false,
1032
+ "normalized": true,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": false
1036
+ },
1037
+ "50385": {
1038
+ "content": "<|extratoken_129|>",
1039
+ "lstrip": false,
1040
+ "normalized": true,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": false
1044
+ },
1045
+ "50386": {
1046
+ "content": "<|extratoken_130|>",
1047
+ "lstrip": false,
1048
+ "normalized": true,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": false
1052
+ },
1053
+ "50387": {
1054
+ "content": "<|extratoken_131|>",
1055
+ "lstrip": false,
1056
+ "normalized": true,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": false
1060
+ },
1061
+ "50388": {
1062
+ "content": "<|extratoken_132|>",
1063
+ "lstrip": false,
1064
+ "normalized": true,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": false
1068
+ },
1069
+ "50389": {
1070
+ "content": "<|extratoken_133|>",
1071
+ "lstrip": false,
1072
+ "normalized": true,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": false
1076
+ },
1077
+ "50390": {
1078
+ "content": "<|extratoken_134|>",
1079
+ "lstrip": false,
1080
+ "normalized": true,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": false
1084
+ },
1085
+ "50391": {
1086
+ "content": "<|extratoken_135|>",
1087
+ "lstrip": false,
1088
+ "normalized": true,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": false
1092
+ },
1093
+ "50392": {
1094
+ "content": "<|extratoken_136|>",
1095
+ "lstrip": false,
1096
+ "normalized": true,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": false
1100
+ },
1101
+ "50393": {
1102
+ "content": "<|extratoken_137|>",
1103
+ "lstrip": false,
1104
+ "normalized": true,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": false
1108
+ },
1109
+ "50394": {
1110
+ "content": "<|extratoken_138|>",
1111
+ "lstrip": false,
1112
+ "normalized": true,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": false
1116
+ },
1117
+ "50395": {
1118
+ "content": "<|extratoken_139|>",
1119
+ "lstrip": false,
1120
+ "normalized": true,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": false
1124
+ },
1125
+ "50396": {
1126
+ "content": "<|extratoken_140|>",
1127
+ "lstrip": false,
1128
+ "normalized": true,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": false
1132
+ },
1133
+ "50397": {
1134
+ "content": "<|extratoken_141|>",
1135
+ "lstrip": false,
1136
+ "normalized": true,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": false
1140
+ },
1141
+ "50398": {
1142
+ "content": "<|extratoken_142|>",
1143
+ "lstrip": false,
1144
+ "normalized": true,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": false
1148
+ },
1149
+ "50399": {
1150
+ "content": "<|extratoken_143|>",
1151
+ "lstrip": false,
1152
+ "normalized": true,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": false
1156
+ }
1157
+ },
1158
+ "bos_token": "<|endoftext|>",
1159
+ "clean_up_tokenization_spaces": true,
1160
+ "eos_token": "<|endoftext|>",
1161
+ "errors": "replace",
1162
+ "model_max_length": 2048,
1163
+ "pad_token": null,
1164
+ "tokenizer_class": "GPT2Tokenizer",
1165
+ "unk_token": "<|endoftext|>"
1166
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff