File size: 1,641 Bytes
4846b95
4f4c90c
b1e2a10
4f4c90c
 
 
 
b1e2a10
4f4c90c
 
 
4846b95
4f4c90c
 
 
 
 
 
 
 
b656419
 
4f4c90c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b656419
 
4f4c90c
 
 
 
b656419
4f4c90c
 
 
1fe9463
 
b656419
 
 
 
 
4f4c90c
 
 
 
b1e2a10
4f4c90c
 
 
b1e2a10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: mit
library_name: peft
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: roberta-base
model-index:
- name: Roberta_peft_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Roberta_peft_model

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2081
- Accuracy: 0.9346

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.00011270038884391928
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2357        | 1.0   | 2105  | 0.1983          | 0.9323   |
| 0.2118        | 2.0   | 4210  | 0.2195          | 0.9278   |
| 0.1939        | 3.0   | 6315  | 0.1972          | 0.9381   |
| 0.1907        | 4.0   | 8420  | 0.2046          | 0.9358   |
| 0.1856        | 5.0   | 10525 | 0.2081          | 0.9346   |


### Framework versions

- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2